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Cooperative game

Core: A value division 𝑥 ∈ ℝ𝑉 is in the core 

if 𝑥(𝑆) ≤ 𝜈(𝑆) for all 𝑆 ⊆ 𝑉 and 𝑥 𝑉 = 𝜈(𝑉)

𝑥 = $9, 𝑥 = $11 is in the core

𝑥 = $10, 𝑥 = $10 is not in the core

𝑉 =

𝜈(            )=$20𝜈(     )=$20 𝜈(     )=$9
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Supermodular cooperative game

• A characteristic function 𝜈 is supermodular

• The Core of a supermodular game is nonempty 

Our contributions

• Analyze the following solution concepts

– Strong least core

– Weak least core

• Derive explicit and concise formulations 
for the strong and weak least core values
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Coarsening	Massive	Influence	Networks	
for	Scalable	Diffusion	Analysis	

Q.	最も影響力の高い集団をどのように発見するか?	
e.g.	マーケット戦略	

||	
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確率的劣モジュラ関数の適応的最大化と
そのニュース推薦への応用

• 問題：ナップサック制約付き単調劣モジュラ関数の最大化
– 各アイテムが確率的に決まる状態をもつ
– 状態によって目的関数とナップサック制約への貢献の両方が決まる

• 本研究：理論保証がある適応的な近似アルゴリズムの提案
– ユーザの反応を考慮したニュースリストの推薦に応用

共同研究者：福永 拓郎（JSTさきがけ） 藤田 澄男（ヤフー） 河原林 健一（NII）

選択
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情報取得 &
ナップサック制約消費

ナップサック制約
（e.g. 閲覧時間）

選択 / スキップ

推薦

1番目のニュース

反応（選択 / スキップ）に応じて次のニュースを選ぶ

ユーザ
2番目のニュース

小西 卓哉（NII）



On Estimation of Conditional Mode Using Multiple
Quantile Regressions
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Problem

A regression analysis for Y ∈ R and X ∈ Rp.

Estimation of Conditional mode of Y given X = x, say, modal regression.

Method

Estimate the conditional density by solving linear quantile regressions multiple
times.

Modal regression function is estimated by finding the quantile which gives the
maximum of conditional densities.

Contribution

New semi-parametric modeling for modal function via conditional quantile
function.

Advantages:

computationally stable:
no initial parameter dependencies and QR can be solved by convex linear
programming.
statistically efficient with a fast convergence rate: QR has

√
n-consistency.
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Multiple zeta values in number theory

and

Bell polynomials in set partition

（ERATO 河原林プロジェクト　理論 G　町出智也）

Bell数 と Bell多項式� �
• Bell数Br,k： r個の物を k個に分ける方法の総数

• Bell多項式Br,k(x1, . . . , xr−k+1)：ベル数の一般化� �
Br,k(1, . . . , 1) = Br,k.



ベル数と源氏香の図
Wikipedia (https://ja.wikipedia.org/wiki/香の図) から転載

B5,5 = 【帚木（ははらぎ）】 = 1

B5,4 = 【空蝉、花の宴、葵、. . .】 = 10

B5 = B5,5 +B5,4 +B5,3 +B5,2 +B5,1 = 52
1/2



多重ゼータ値

• Euler (1707 - 1783) により始めて研究された実数

• 多項式への一般化 （※ 繰り込みの手法により）

ζ⋆∗ (k1, k2, . . . , kr;T )

結果� �
•

∑
σ∈Sr

ζ⋆∗ (kσ(1), kσ(2), . . . , kσ(r);T ) （Sr：対称群）

• ベル多項式との関係

5!ζ⋆∗ (1, 1, 1, 1, 1;T ) = B5 (T, ζ
⋆(2), 2ζ⋆(3), 6ζ⋆(4), 24ζ⋆(5))

� �
ちなみに r! = Br (0!, 1!, . . . , (r − 1)!)

2/2



Submodular maximization
with uncertain knapsack capacity

Yasushi Kawase (TITech, RIKEN AIP)
Hanna Sumita (NII, ERATO)

Takuro Fukunaga (RIKEN AIP)
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The knapsack constraint is uncertain
max. 	𝑓(𝑋)							s. t. 	∑ 𝑠.�

.∈1 ≤ 𝐶
capacity is uncertain

𝑠4 = 180(yen) 𝑠9 = 140 𝑠; = 100 𝑠< = 150

monotone submodular

I want to choose an item set 𝑋 maximizing my utility
But I do not know the capacity 𝐶

OK

oracle
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Main results

u𝐶 is unknown: deterministic policy s.t.

u𝐶 is stochastic: a randomized algorithm s.t.

Note: all policies & algos run in poly. time
Related work: 𝐶 is known but size 𝑠. is unknown, …

policy
(decision tree) YES

NO

fit?

In what order should we add the items?

output
optimal value (𝐶:	known) ≥ 2(1	 − 	1/𝑒)/21	 for any capacity

𝔼E[output]
𝔼E[optimal value] ≥ (1 − 1/ 𝑒H )/4	 − 𝜀



Indexing Search Trees and Applications
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Problem Definition

Given an undirected graph G = (V ,E ) where |V | = n and
|E | = m, preprocess and answer the following queries: Given
any (u, v),

are they connected?
who is visited first in the DFS/BFS traversal of G?
do they share ancestor/decendant relationship in DFS/BFS
tree? etc.

Easy! O(1) time solution when O(n) words or O(n log n) bits
are available in the word-RAM model.

What happens with less space i.e., o(n) words? Can we still
get O(1) time query or report correctly at all?
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Results and Techniques

It is possible to answer these queries and many more with the
following resource bounds.

O(log n) query time with O(n) bits of space for sparse graphs.
O(log n) query time with O(n log log n) bits of space for dense
graphs.

Can be extended for other fundamental graph theoretic
questions along with generalizing to produce time/space trade
off results.

Main technique: Space efficient construction of tree
partioning and time effcient algorithms for tree traversal.

Open Problem: Can we go o(n) bits with efficient (polylog)
query time?
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Thank You.

Sankardeep Chakraborty Indexing Search Trees and Applications



Approximation Algorithms
for Hub-and-Spoke Network Design Problems

and Metric Labeling Problems

Yuko Kuroki Tomomi Matsui
Tokyo Institute of Technology

Hub-and-Spoke Network arises in real world situations such as:

・airline network
・telecommunication network

hub

hub

hub

Key words: 
operations research,
combinatorial optimization, 
approximation algorithms

We discuss a problem to find
an assignment of non-hubs to hubs 

that minimizes total costs. 

情報系 WINTER FESTA 2017/12/26



We propose polynomial time constant ratio approximation algorithms 
for hub-and-spoke network design problems and metric labeling problems.

Metric Labeling Problems [Kleinberg and Tardos,2002]

set 𝑃 of 𝑛 objects
set 𝐿 of 𝑘 possible labels

A labeling function 𝑓 : 𝑃 → 𝐿

Hub-and-Spoke Network Design Problems

 

𝑝,𝑞 ∈𝑁2

𝑤𝑝𝑞 ( 
𝑖∈𝐻
𝑐𝑝𝑖𝑥𝑝𝑖 + 

𝑗∈𝐻
𝑐𝑞𝑗𝑥𝑞𝑗 + 

𝑖∈𝐻
 
𝑗∈𝐻
𝑐𝑖𝑗𝑥𝑝𝑖 𝑥𝑞𝑗)

Objective function (minimization)

Constraints  𝑖∈𝐻 𝑥𝑝𝑖 = 1 (∀𝑝 ∈ 𝑁),

𝑥𝑝𝑖 ∈ 0,1 (∀(𝑖, 𝑝) ∈ (𝐻 × 𝑁))

value of an approximation solution

0

objective values

𝛼 ×(optimal value)optimal value

Main Result

-approx. alg.

Star-Metric Case

・2 1 − 1
ℎ

-approx. alg. (ℎ #hubs)

・(3
2
− 1

2(ℎ−1)
)- approx. alg. 

(under the assumption of triangle inequality)

Cycle-Metric Case



A tractable class of binary VCSPs 
via M-convex intersection

Stanislav Živný（Oxford）
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A tractable class of binary VCSPs 
via M-convex intersection

Binary VCSPs
Given:

Problem:
(p, q 2 [r])

(p 2 [r])

Minimize

((X1, X2, . . . , Xr) 2 D1 ⇥D2 ⇥ · · ·⇥Dr)

Fp : Dp ! R

F (X1, X2, . . . , Xr) :=
X

1pr

Fp(Xp) +
X

1p<qr

Fpq(Xp, Xq)

Fpq : Dp ⇥Dq ! R [r] := {1, 2, . . . , r}

finite set
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Given:
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離散凸性（M凸性）を用いて
新しい多項式時間可解なクラスを構築

どのような F なら多項式時間で解けるか？
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