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Cooperative game
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Core: A value division x € RY is in the core
if x(S) <v(S) forall SV and x(V) = v(V)

x(@) = $9,x@) = $11 is in the core
x(@) = $10,x(@) = $10 is not in the core
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Computing Least Cores of Supermodular
Cooperative Game (AAAI-2017)
Daisuke Hatano(NII) and Yuichi Yoshida(NII, PFI)

Supermodular cooperative game
A characteristic function v is supermodular

The Core of a supermodular game is nonempty

Our contributions

Analyze the following solution concepts
Strong least core
Weak least core

Derive explicit and concise formulations

for the strong and weak least core values
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Coarsening Massive Influence Networks

for Scalable Diffusion Analysis
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On Estimation of Conditional Mode Using Multiple
Quantile Regressions
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Problem
@ A regression analysis for Y € R and X € RP.
@ Estimation of Conditional mode of Y given X = x, say, modal regression.

Method

@ Estimate the conditional density by solving linear quantile regressions multiple
times.

@ Modal regression function is estimated by finding the quantile which gives the
maximum of conditional densities.

Contribution
@ New semi-parametric modeling for modal function via conditional quantile
function.
@ Advantages:
@ computationally stable:
no initial parameter dependencies and QR can be solved by convex linear

programming.
e statistically efficient with a fast convergence rate: QR has /n-consistency.
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Multiple zeta values in number theory
and
Bell polynomials in set partition
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Submodular maximization
with uncertain knapsack capacity

Yasushi Kawase (TITech, RIKEN AlP)
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The knapsack constraint is uncertain

max. f(X) s.t QxS <C
monotone submodular capacity is uncertain

‘:-.: o W7
- \_A = 180(yen) s, =140 ‘e s; = 100

| want to choose an item set X maximizing my utility
But | do not know the capacity C
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The knapsack constraint is uncertain

max. f(X) s.t QxS <C
monotone submodular capacity is uncertain
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The knapsack constraint is uncertain

max. f(X) s.t QxS <C
monotone submodular capacity is uncertain
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Main results
In what order should we add the items?

policy

(decision tree) fit? YES o<
\/ NO A2 O@;

w<g

//////<w

AN

@ C is unknown: deterministic policy s.t.

output
optimal value (C: known)

>2(1 — 1/e)/21 for any capacity

@ C is stochastic: a randomized algorithm s.t.

[Ec[output] > (1—1/42)/4 —¢

E.-[optimal value]

Note: all policies & algos run in poly. time
Related work: C is known but size s; is unknown, ...



Indexing Search Trees and Applications
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Problem Definition

e Given an undirected graph G = (V, E) where |V| = n and
|E| = m, preprocess and answer the following queries: Given

any (u,v),
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Problem Definition

e Given an undirected graph G = (V, E) where |V| = n and
|E| = m, preprocess and answer the following queries: Given
any (u,v),

e are they connected?

o who is visited first in the DFS/BFS traversal of G?

o do they share ancestor/decendant relationship in DFS/BFS
tree? etc.
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Problem Definition

e Given an undirected graph G = (V, E) where |V| = n and
|E| = m, preprocess and answer the following queries: Given
any (u,v),

e are they connected?

o who is visited first in the DFS/BFS traversal of G?

o do they share ancestor/decendant relationship in DFS/BFS
tree? etc.

e Easy! O(1) time solution when O(n) words or O(nlog n) bits
are available in the word-RAM model.

Sankardeep Chakraborty Indexing Search Trees and Applications



Problem Definition

e Given an undirected graph G = (V, E) where |V| = n and
|E| = m, preprocess and answer the following queries: Given
any (u,v),

e are they connected?

o who is visited first in the DFS/BFS traversal of G?

o do they share ancestor/decendant relationship in DFS/BFS
tree? etc.

e Easy! O(1) time solution when O(n) words or O(nlog n) bits
are available in the word-RAM model.

e What happens with less space i.e., o(n) words? Can we still
get O(1) time query or report correctly at all?
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Results and Techniques
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Results and Techniques

@ It is possible to answer these queries and many more with the
following resource bounds.
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Results and Techniques

@ It is possible to answer these queries and many more with the
following resource bounds.
o O(log n) query time with O(n) bits of space for sparse graphs.
o O(log n) query time with O(nloglog n) bits of space for dense
graphs.
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Results and Techniques

@ It is possible to answer these queries and many more with the
following resource bounds.
o O(log n) query time with O(n) bits of space for sparse graphs.
o O(log n) query time with O(nloglog n) bits of space for dense
graphs.
@ Can be extended for other fundamental graph theoretic
questions along with generalizing to produce time/space trade
off results.
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Results and Techniques

@ It is possible to answer these queries and many more with the
following resource bounds.

o O(log n) query time with O(n) bits of space for sparse graphs.
o O(log n) query time with O(nloglog n) bits of space for dense
graphs.
@ Can be extended for other fundamental graph theoretic
questions along with generalizing to produce time/space trade
off results.

@ Main technique: Space efficient construction of tree
partioning and time effcient algorithms for tree traversal.
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Results and Techniques

@ It is possible to answer these queries and many more with the
following resource bounds.

o O(log n) query time with O(n) bits of space for sparse graphs.
o O(log n) query time with O(nloglog n) bits of space for dense
graphs.
@ Can be extended for other fundamental graph theoretic
questions along with generalizing to produce time/space trade
off results.

@ Main technique: Space efficient construction of tree
partioning and time effcient algorithms for tree traversal.

@ Open Problem: Can we go o(n) bits with efficient (polylog)
query time?
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Thank You.
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Approximation Algorithms
for Hub-and-Spoke Network Design Problems
and Metric Labeling Problems

Yuko Kuroki Tomomi Matsui Key words:
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combinatorial optimization,
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(http://www.airlineroutemaps.com/USA/Continental_Airlines_usa.shtml)

non-hub

Point-to-Point Hub-and-Spoke

Hub

Hub-and-Spoke Network arises in real world situations such as: We discuss a problem to find
. airline network an assignment of non-hubs to hubs

- telecommunication network that minimizes total costs.



We propose polynomial time constant ratio approximation algorithms
for hub-and-spoke network design problems and metric labeling problems.

value of an approximation solution

0 <
‘ objective values

optimal value a x(optimal value)
Hub-and-Spoke Network Design Problems Main Result
Objective function (minimization)
Wpg () CpiXpit ) CqiXgjt ) _ CijXpi Xqj) ,
(p,;Nz E‘EH EJEH ZlEH ZJEH Star-Metric Case
Constraints YienXpi =1 (Vp€EN), miﬂ{f@; (2 + %) |r > 1}-approx. alg.
i €{01}  (Y(p) € (HXN)) (~ 5.2809 at r ~ 1.91065)
‘ Cycle-Metric Case
Metric Labeling Problems [Kieinberg and Tardos,2002] - 2(1—1)-approx. alg.  (h #hubs)
: — cC--9)- rox. alg.
set P of n objects (ur(mélerzt%lélé)ssjnaptign o?tgrlian le inequalit
set L of k possible labels ' P gle inequality)

A labeling function f : P > L
QN =S o fe)+ S wed(f(p), f())- Dij\j

peP e=(p,q)€E



A tractable class of binary VCSPs
via M-convex intersection
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A tractable class of binary VCSPs
via M-convex Intersection
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Binary VCSPS finite set
Given: F,:D,—R (p€]|r])
Fo:DyxD, R  (pgelr]) l={12...7
Problem:
Minimize
F(X1,X0,...,X) 1= Y F(Xp)+ Y Fp(Xp, Xy)

1<p<r 1<p<q<r

(X1, X2,...,X;) € D1 X Dy x -+ x D)




A tractable class of binary VCSPs
via M-convex Intersection
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Give
Fy,: D, x D, = R (p,q € |r]} Irl=1L,2,...,7}
Problem:
Minimize
F(X1,X0,...,X) 1= Y F(Xp)+ Y Fp(Xp, Xy)

1<p<r 1<p<q<r

(X1, X2,...,X;) € D1 X Dy x -+ x D)



A tractable class of binary VCSPs
via M-convex Intersection
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