ICML2017

正例とラベルなしデータからの分類に 基づく半教師付き分類

(Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data)

<mark>坂井智哉</mark>^{1,2} Marthinus C. du Plessis, Gang Niu, 杉山将^{2,1} 「東京大学 ²理化学研究所

コードが利用可能:

http://www.ms.k.u-tokyo.ac.jp/software.html#PNU

分類問題

データ点のクラス(カテゴリー)を明らかにする 具体例

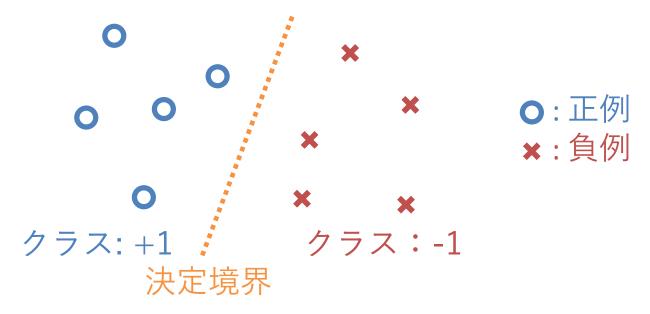
- ウェブサイトがフィッシングサイトか否か
- ▶画像がネコか否か

大熊猫

画像出典: http://www.image-net.org/ http://sozaing.com/

教師付き分類

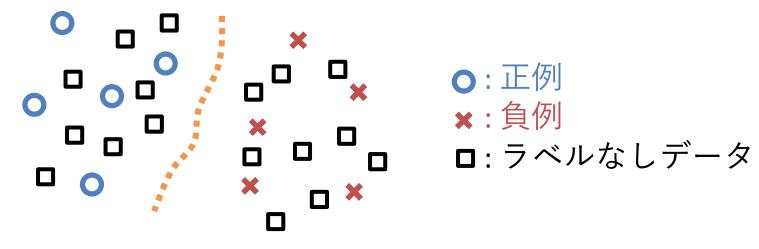
ラベル付きデータ(正例と負例)からの分類



- たくさんラベル付きデータがあれば高い分類精度
- ラベル付きデータは高価

半教師付き分類

ラベル付きデータとラベルなしデータからの分類

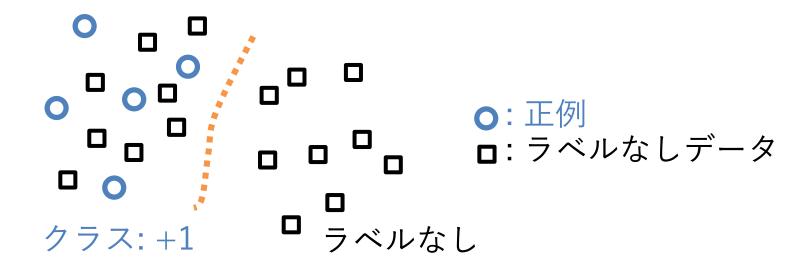


- ラベル付けの費用が減る
- (**) 従来法は**分布に対する強い仮定**を必要とする
 - ◆例)クラスタ仮定: 同じクラスタに属するデータ点は同じラベルを持つことを要求 (Chapelle et al., NIPS, 2002)
 - ▶ 従来法は、仮定が成り立たないデータで性能が出ない

正例とラベルなしデータからの分類

Positive-Unlabeled Classification

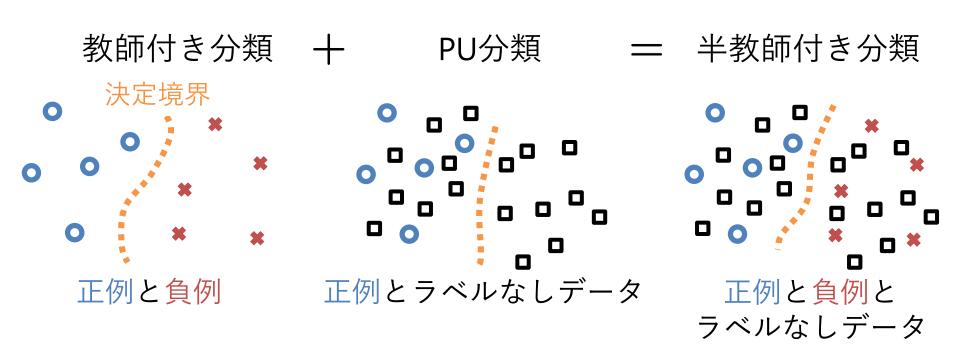
負例がない代わりにラベルなしデータが与えられる



データ分布に対する強い仮定なしでラベルなしデータを 利用可能 (du Plessis et al., NIPS, 2014)

提案する方法の概要

教師付き分類とPU分類を組み合わせる



データ分布に対する強い仮定なしにラベルなしデータを 利用可能

発表の流れ

- 1. 背景
- 2. 問題設定と従来法・

- 3. 提案法
- 4. 解析
- 5. 実験
- 6. まとめ

 $\theta_{\rm P} := p(y = +1)$

問題設定

正例 (P), 負例 (N), ラベルなしデータ (U):

$$\begin{aligned} \{ \boldsymbol{x}_{i}^{\mathrm{P}} \}_{i=1}^{n_{\mathrm{P}}} &\overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x} \mid y = +1) \\ \{ \boldsymbol{x}_{i}^{\mathrm{N}} \}_{i=1}^{n_{\mathrm{N}}} &\overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x} \mid y = -1) \\ \{ \boldsymbol{x}_{i}^{\mathrm{U}} \}_{i=1}^{n_{\mathrm{U}}} &\overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x} \mid y = -1) \\ \{ \boldsymbol{x}_{i}^{\mathrm{U}} \}_{i=1}^{n_{\mathrm{U}}} &\overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x}) := \theta_{\mathrm{P}} p(\boldsymbol{x} \mid y = +1) + \theta_{\mathrm{N}} p(\boldsymbol{x} \mid y = -1) \end{aligned}$$

分類器: $g: \mathbb{R}^d \to \mathbb{R}$ (例 $g(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + w_0$)

損失関数: $\ell: \mathbb{R} \to \mathbb{R}$ (例 $\ell(m) = (1-m)^2$)

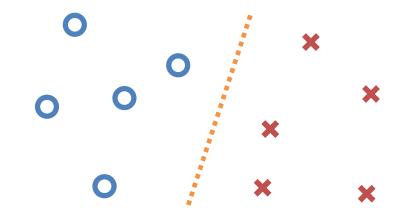
 $\theta_{\rm N} := p(y = -1)$ $\theta_{\rm P} + \theta_{\rm N} = 1$

PN分類(教師付き分類)

正例と負例から計算されるPNリスクを最小化するように分類器を訓練

$$R(g) = E_{p(\boldsymbol{x},y)}[\ell(yg(\boldsymbol{x}))]$$

= $\theta_{P} E_{P}[\ell(g(\boldsymbol{x}))] + \theta_{N} E_{N}[\ell(-g(\boldsymbol{x}))] := R_{PN}(g)$



$$\mathbf{E}_{\mathbf{P}}[\cdot] := \mathbf{E}_{p(\boldsymbol{x}|y=+1)}[\cdot]$$

$$\mathbf{E}_{\mathbf{N}}[\cdot] := \mathbf{E}_{p(\boldsymbol{x}|y=-1)}[\cdot]$$

$$\boldsymbol{\theta}_{\mathbf{P}} = p(y=+1)$$

$$\boldsymbol{\theta}_{\mathbf{N}} = p(y=-1)$$

▶ 実用上は,標本平均による経験リスクを利用

$$\widehat{R}_{\text{PN}}(g) = \frac{\theta_{\text{P}}}{n_{\text{P}}} \sum_{i=1}^{n_{\text{P}}} \ell(g(\boldsymbol{x}_{i}^{\text{P}})) + \frac{\theta_{\text{N}}}{n_{\text{N}}} \sum_{j=1}^{n_{\text{N}}} \ell(-g(\boldsymbol{x}_{j}^{\text{N}}))$$

$$\{\boldsymbol{x}_{i}^{\text{P}}\}_{i=1}^{n_{\text{P}}} \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x} \mid y = +1) \{\boldsymbol{x}_{i}^{\text{N}}\}_{i=1}^{n_{\text{N}}} \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x} \mid y = -1)$$

PU分類

正例とラベルなしデータから計算されるPUリスクを 最小化するように分類器を訓練

取が化するように万無路を訓練
$$R_{\mathrm{PN}}(g) = \theta_{\mathrm{P}} \operatorname{E}_{\mathrm{P}}[\ell(g(x))] + \theta_{\mathrm{N}} \operatorname{E}_{\mathrm{N}}[\ell(-g(x))]$$
 $\operatorname{E}_{\mathrm{U}}[\ell(-g(x))] = \theta_{\mathrm{P}} \operatorname{E}_{\mathrm{P}}[\ell(-g(x))] + \theta_{\mathrm{N}} \operatorname{E}_{\mathrm{N}}[\ell(-g(x))]$ PU スク: $R_{\mathrm{PU}}(g) := \theta_{\mathrm{P}} \operatorname{E}_{\mathrm{P}}[\ell(g(x))] + \operatorname{E}_{\mathrm{U}}[\ell(-g(x))] - \theta_{\mathrm{P}} \operatorname{E}_{\mathrm{P}}[\ell(-g(x))]$ $\operatorname{E}_{\mathrm{P}}[\cdot] := \operatorname{E}_{p(x)[x-1)}[\cdot]$ $\operatorname{E}_{\mathrm{U}}[\cdot] := \operatorname{E}_{p(x)}[\cdot]$

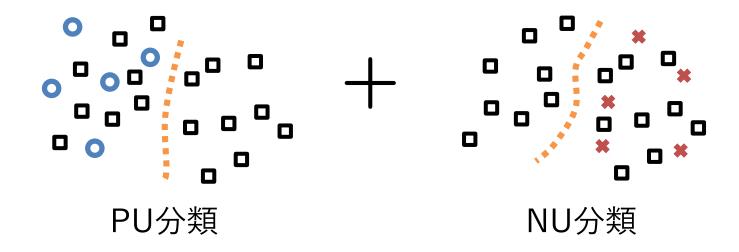
〇: 正例

発表の流れ

- 1. 背景
- 2. 問題設定と従来法
- 3. 提案法
- 4. 解析
- 5. 実験
- 6. まとめ

PUNU分類 = PU+NU

PU分類と対称なNU分類を組み合わせる



PUNU分類におけるリスク (PUNUリスク): $R_{\mathrm{PUNU}}^{\gamma}(g) := (1 - \gamma)R_{\mathrm{PU}}(g) + \gamma R_{\mathrm{NU}}(g)$ $\gamma \in [0, 1]$

PNU分類 = PN+PU & PN+NU

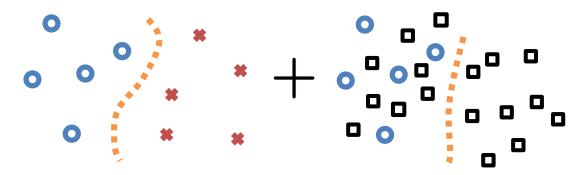
あるいは、PN分類とPUまたはNU分類を組み合わせる

> PNUリスク:

$$R_{\mathrm{PNU}}^{\eta}(g) := \begin{cases} R_{\mathrm{PNPU}}^{\eta}(g) & (\eta \ge 0) \\ R_{\mathrm{PNNU}}^{-\eta}(g) & (\eta < 0) \end{cases} \quad \eta \in [-1, 1]$$

◆ PNPUリスク:

$$R_{\text{PNPU}}^{\gamma}(g) := (1 - \gamma) R_{\text{PN}}(g) + \gamma R_{\text{PU}}(g) \quad \gamma \in [0, 1]$$



◆ PNNUリスク:

$$R_{\text{PNNU}}^{\gamma}(g) := (1 - \gamma)R_{\text{PN}}(g) + \gamma R_{\text{NU}}(g) \quad \gamma \in [0, 1]$$

PUNU vs. PNU分類

理論解析(Niu et al., 2016)によると, (場合I) $\begin{cases} R(\widehat{g}_{\mathrm{PU}}) < R(\widehat{g}_{\mathrm{PN}}) < R(\widehat{g}_{\mathrm{NU}}) \\ R(\widehat{g}_{\mathrm{NU}}) < R(\widehat{g}_{\mathrm{PN}}) < R(\widehat{g}_{\mathrm{PU}}) \end{cases}$ nuが十分大きいとき PUまたはNU分類がベスト (場合||) $\begin{cases} R(\widehat{g}_{\mathrm{PN}}) < R(\widehat{g}_{\mathrm{NU}}) < R(\widehat{g}_{\mathrm{PU}}) \\ R(\widehat{g}_{\mathrm{PN}}) < R(\widehat{g}_{\mathrm{PU}}) < R(\widehat{g}_{\mathrm{NU}}) \end{cases}$ nuが小さいとき PN分類が常にベスト

- ➤ PNU分類は場合Iと場合IIにおいてベストなものの 組み合わせであるが、PUNU分類はそうではない
- ➤ PNU分類がPUNU分類よりも有望

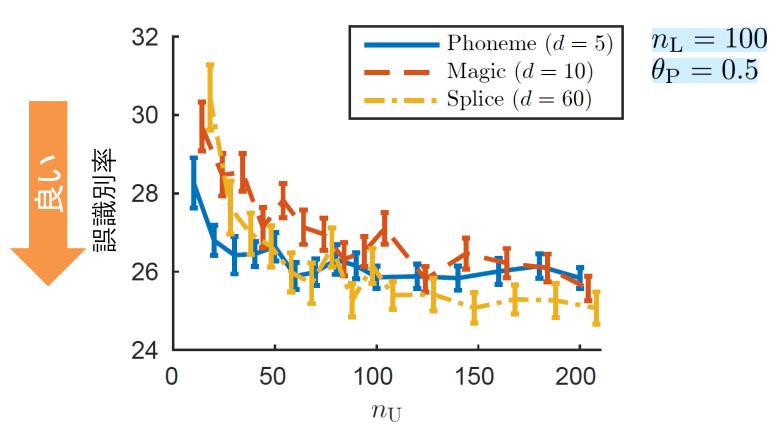
$$\widehat{g}_{\mathrm{PN}} := \operatorname*{argmin}_{g \in \mathcal{G}} \widehat{R}_{\mathrm{PN}}(g) \ \widehat{g}_{\mathrm{PU}} := \operatorname*{argmin}_{g \in \mathcal{G}} \widehat{R}_{\mathrm{PU}}(g) \ \widehat{g}_{\mathrm{NU}} := \operatorname*{argmin}_{g \in \mathcal{G}} \widehat{R}_{\mathrm{NU}}(g)$$

発表の流れ

- 1. 背景
- 2. 問題設定と従来法
- 3. 提案法
- 4. 解析 🛑
- 5. 実験
- 6. まとめ

ラベルなしデータの役割

Q. どのようにラベルなしデータが役立つか?



A. $n_{\rm U}$ が増加するにつれて誤識別率が減少

汎化誤差上界

汎化誤差:

$$I(g) := \mathrm{E}_{p(\boldsymbol{x},y)}[\ell_{0\text{-}1}(yg(\boldsymbol{x}))]$$

$$0-1$$
損失: $\ell_{0-1}(m) = \frac{1-\text{sign}(m)}{2}$

分布に対する強い仮定なしに, 汎化誤差上界を証明:

どのような
$$\delta > 0$$
 に対しても,
$$I(g) \leq 2\widehat{R}_{\text{PNPU}}(g) + C_{w,\phi,\delta} \left(\frac{(1+\gamma)\theta_{\text{P}}}{\sqrt{n_{\text{P}}}} + \frac{(1-\gamma)\theta_{\text{N}}}{\sqrt{n_{\text{N}}}} + \frac{\gamma}{\sqrt{n_{\text{U}}}} \right)$$
 が確率 $1-\delta$ 以上で,すべての $g \in \mathcal{G}$ に対して成り立つ

▶ ラベルなしデータが汎化誤差上界の減少に役立つ

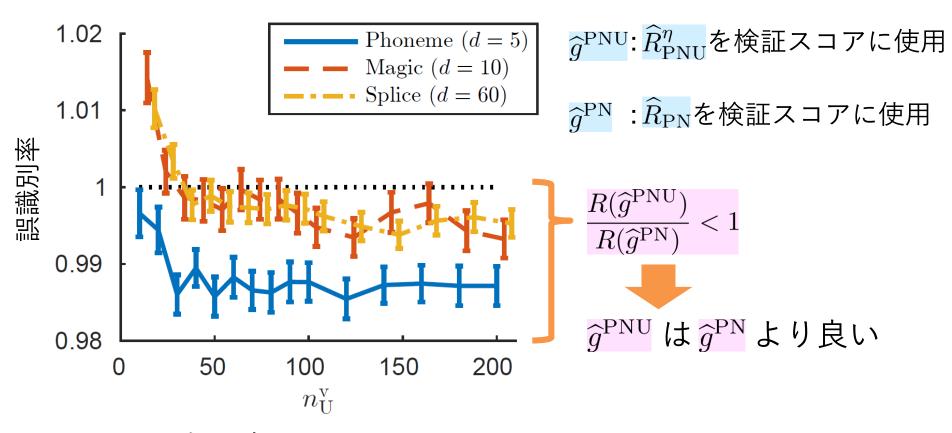
PNNUとPUNUともに同様の性質を持つ

(Ref.
$$R_{\mathrm{PNPU}}^{\gamma}(g) := (1 - \gamma)R_{\mathrm{PN}}(g) + \gamma R_{\mathrm{PU}}(g)\gamma \in [0, 1]$$
)
$$\mathcal{G} = \{g(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}) \rangle \mid \|\boldsymbol{w}\| \leq C_w, \|\boldsymbol{\phi}(\boldsymbol{x})\| \leq C_\phi\}$$

$$C_{w,\phi,\delta} := 2C_w C_\phi + \sqrt{2\ln(3/\delta)}$$

PNUリスクを用いたハイパーパラメータ選択

Q. PNリスク $R_{PN}(g)$ とPNUリスク $R_{PNU}^{\eta}(g)$, どちらを検証スコアに用いると良いか?



A. PNUリスク $R_{\text{PNU}}^{\eta}(g)$

分散低減効果

分布に対する強い仮定なしに,以下を証明:

$$\begin{aligned} &\operatorname{Var}[\widehat{R}_{\text{PNPU}}^{\gamma}(g)] < \operatorname{Var}[\widehat{R}_{\text{PN}}(g)] \, \text{たさし} \, \gamma \in (0, 2\gamma_{\text{PNPU}}) \\ &\operatorname{Var}[\widehat{R}_{\text{PNNU}}^{\gamma}(g)] < \operatorname{Var}[\widehat{R}_{\text{PN}}(g)] \, \text{たさし} \, \gamma \in (0, 2\gamma_{\text{PNNU}}) \\ &n_{\text{U}} \to \infty \, \mathcal{O} \, \mathcal{E} \, \stackrel{\textstyle \star}{\geq} \, \\ &\frac{\gamma_{\text{PNPU}} := \mathop{\mathrm{argmin}}_{\gamma} \operatorname{Var}[\widehat{R}_{\text{PNPU}}^{\gamma}(g)]}{\gamma_{\text{PNNU}} := \mathop{\mathrm{argmin}}_{\gamma} \operatorname{Var}[\widehat{R}_{\text{PNNU}}^{\gamma}(g)]} \end{aligned}$$

PNUリスクの方がPNリスクよりも分散が小さい(安定)

➤ 安定なPNUリスクがハイパーパラメータ選択時の 検証スコアに有用 (交差確認法)

$$R_{\mathrm{PNU}}^{\eta}(g) := \begin{cases} R_{\mathrm{PNPU}}^{\eta}(g) & (\eta \ge 0) \\ R_{\mathrm{PNNU}}^{-\eta}(g) & (\eta < 0) \end{cases} \eta \in [-1, 1]$$

発表の流れ

- 1. 背景
- 2. 問題設定と従来法
- 3. 提案法
- 4. 解析
- 5. 実験
- 6. まとめ

ベンチマークデータでの実験設定

ガウスカーネルモデルを利用:

$$g(\boldsymbol{x}) = \sum_{i=1}^{n} w_i \exp\left(\frac{\|\boldsymbol{x} - \boldsymbol{x}_i\|^2}{2\sigma^2}\right)$$

比較手法:

- ▶エントロピー正則化 (ER) (Grandvalet & Bengio, NIPS, 2004)
- ▶ ラプラシアンSVM (LapSVM) (Belkin et al., JMLR, 2006)
- ➤ 二乗損失相互情報量正則化 (SMIR) (Niu et al., ICML, 2013)
- ➤ 弱ラベル付きSVM (WellSVM) (Li et al., JMLR, 2013)
- ➤ 安全半教師付きSVM (S4VM) (Li & Zhou, PAMI, 2015)

誤識別率 (低いほど良い)

平均と村	票準誤差
------	------

 $n_{\rm U} = 300$

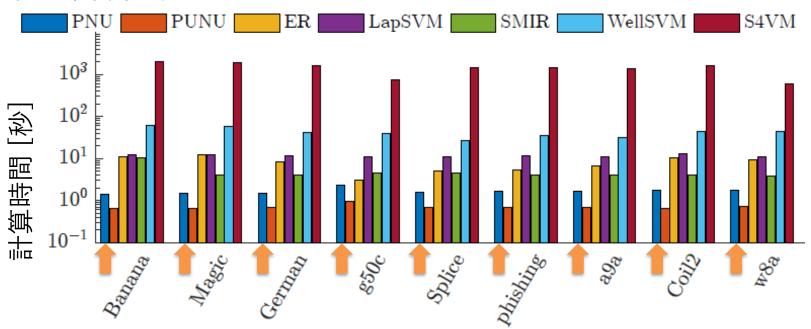
Data set $n_{\rm L}$	PNU	PUNU	ER	LapSVM	SMIR	WellSVM	S4VM
	$egin{array}{c} {\bf 30.1} \ ({f 1.0}) \ {f 19.0} \ ({f 0.6}) \end{array}$	32.1 (1.1) 26.4 (1.2)	35.8 (1.0) 20.6 (0.7)	\ /	\ /	41.8 (0.6) 42.6 (0.5)	\ /
0	$egin{array}{c} {\bf 31.7} \; ({f 0.8}) \ {f 29.9} \; ({f 0.8}) \end{array}$	\ /	34.2 (1.1) 30.9 (0.5)	\ /	\ /	$egin{array}{c} {\bf 30.1} \ ({\bf 0.8}) \ {\bf 28.8} \ ({\bf 0.8}) \end{array}$	\ /
	$egin{array}{c} 40.8 \; (0.9) \ 36.2 \; (0.8) \end{array}$	42.4 (0.7) 39.0 (0.8)	, ,	, ,	, ,	42.4 (0.8) 38.5 (1.0)	, ,
	11.4 (0.6) 12.5 (1.1)	12.5 (0.6) 10.1 (0.6)	` ,	` '	` ,	6.6 (0.4) 7.4 (0.4)	` /
-	$egin{array}{c} {\bf 38.3} \; ({f 0.8}) \ {f 30.6} \; ({f 0.8}) \end{array}$	39.3 (0.8) 34.7 (0.9)	43.9 (0.8) 30.9 (0.8)	` /	` /	` /	42.4 (0.6) 35.9 (0.7)
_	` /	25.8 (1.0) 18.3 (0.8)	` /	` /	\ /	` /	` /
	\ /	31.3 (1.0) 29.9 (0.8)	\ /	\ /	\ /	\ /	\ /
	\ /	40.1 (0.8) 30.5 (0.9)		\ /	\ /	\ /	\ /
	` ′	$egin{array}{c} {\bf 33.6} \ ({f 1.0}) \ {f 27.6} \ ({f 0.6}) \end{array}$	` /	, ,	` '	` '	` '

➤PNU分類は分類精度が良い

*色付きのセルは平均誤識別率が最も低い手法と、それと有意差5%のt検定で同等の手法を示す

計算時間

平均計算時間



➤PNU分類は計算効率が良い

画像分類での実験設定

二つの似た景色を分類する (データセット: Places 205) (Zhou et al., NIPS, 2014)

- ▶ タスクの例
 - Desert sand

vs. Desert vegetation

Subway station platforms vs. Train station platforms

ightharpoonup AlexNetを用いて抽出した特徴ベクトル(d=4096)を使用

入力に関する線形モデルを利用: $g(x) = w^{\mathsf{T}}x + w_0$

 $n_{\rm T} = 100$

誤識別率 (低いほど良い)

平均と標準誤差	

								70L 100
Data set	$n_{ m U}$	$ heta_{ m P}$	$\widehat{\theta}_{\mathrm{P}}$	PNU	ER	LapSVM	SMIR	WellSVM
Arts	1000 5000 10000	0.50($0.50\ \dot{(}0.01\dot{)}$		\ /	26.1 (0.7) 26.1 (0.4) 25.5 (0.6)	$30.1\ (1.6)$	N/A
Deserts	1000 5000 10000	0.73($0.67\ (0.01)$		$13.3 \ (0.5)$	` /	17.2 (0.8) 24.4 (0.6) N/A	N/A
Fields	1000 5000 10000	0.65($0.57\ (0.01)$	22.4 (1.0) 20.6 (0.5) 21.6 (0.6)		26.6 (1.3) 24.7 (0.8) 25.0 (0.9)	\ /	` ,
Stadiums	1000 5000 10000	0.50($0.50\ \dot{(}0.01\dot{)}$		$10.9\ (0.3)$	\ /	17.4 (3.6) 13.4 (0.7) N/A	\ /
Platforms	1000 5000 10000	0.27 ($0.34\ (0.01)$	$egin{array}{c} {f 21.8} \ (0.5) \ {f 23.3} \ (0.8) \ {f 21.4} \ (0.5) \ \end{array}$		24.1 (0.5) 24.9 (0.7) 24.8 (0.5)	$26.6\ (0.3)$	\ /

➤PNU分類は性能が良い

クラス事前確率 θ はエネルギー距離最小化に基づいた手法により推定 (Kawakubo et al., IEICE, 2015)

* "N/A"は計算時間が2時間を超えた手法

まとめ

- > PU分類に基づく半教師付き分類手法を提案
 - ◆ PNU分類
- ▶ 提案したリスク推定量を理論的に解析
 - ◆ 汎化誤差上界
 - ◆ 分散低減効果
- 提案法の有用性を実験的に示した

コードが利用可能:

http://www.ms.k.u-tokyo.ac.jp/software.html#PNU