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Introduction



Viral Marketing [Richardson–Domingos’02]

Viral Marketing
Marketing strategy that uses social networks to promote a
product, i.e.,

Giving products for some individuals (seeds) to propagate
information over the social network by word-of-mouth effect

Objective
Estimate (and Maximize) the size of influence spread
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Mathematical Model (Independent Cascade Model)

A social network is modeled as a directed graph G = (V, E;p)
(V: users, E: communications, p(e): activation probability)

Independent Cascade Model [Goldenberg+’01]
Information propagates from S ⊆ V (seeds):
1. At the first step, the seeds s ∈ S become active
2. When u ∈ V becomes active, its neighbor v ∈ N(u)
becomes active with probability p(u, v)

Influence spread σ(S) = expected number of activated users u

⇒ ⇒
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Independent Cascade Model (Coin-Flipping ver.)

In the IC model, each edge is examined once. Therefore it is
equivalent to the following “pre coin-flipping” model:

Independent Cascade Model (Coin-Flipping)
σ(S) is the expected number of reachable vertices from S
in a random graph where e ∈ E appears with probability p(e)
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Influence Maximization Problem [Kempe+’03]

maximize σ(S) subject to |S| ≤ k

• (Good News) σ(S) is a monotone submodular function
⇒ The greedy algorithm attains 1− 1/e approximation
by polynomial number of σ(·) evaluations

• (Bad News) Evaluation of σ(·) is #P-Hard

Existing Work: Monte-Carlo simulation (e.g., [Borgs+’14])

• Simulate the model Ω(1/ϵ2) times to obtain (1± ϵ)

approximation of σ(S)
• Suitable for rough estimation of σ(S) in large networks
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This Study: Exact Computation of Influence Spread

Our Goal
Compute σ(S) exactly on small networks (e.g., m ≈ 100)
(Naive method cannot be used because of 2100 configurations)

Why exact computation?

• Precise analysis on small networks is important because
social networks consist from many small communities

• Exact method can be used to evaluate the practical
accuracy of Monte-Carlo simulations

• Practical algorithm for #P-Hard problem is itself
interesting topic in Computer Science
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Our Contributions

Our Contributions

• We proposed the first (non-trivial) algorithm for
computing σ(S) exactly

• It runs on m ≈ 100 networks in a reasonable time
• It can be used to solve another influence-spread related
problems (e.g., sampling, conditional expectation, ...)

Our Approach

• Construct the binary decision diagrams (BDDs) for S-t
connected subgraphs

• Perform dynamic programming to compute the influence
spread
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Proposed Algorithm (Outline)



Reformulation of Influence Spread

Let us define

• p(F) =
∏
e∈F

p(e)
∏
e′ ̸∈F

(1− p(e′))

• R(S, t) := {F ⊆ E : G[F] has a S-t path}

Then the influence spread is given by

σ(S) =
∑
t∈V

σ(S, t)

where

σ(S, t) =
∑

F∈R(S,t)
p(F) =: p(R(S, t))

We compute σ(S) by using the above formulas
... An efficient algorithm to enumerate R(S, t) is required

7/35



Binary Decision Diagram (BDD)

We maintain R(S, t) by a binary decision diagram (BDD)

BDD
A compact representation of a Boolean function

- A DAG with single root and two terminals (0 and 1)
- Each node has two children (0-child and 1-child)
- Each node is associated with a variable e ∈ E

A path from the root to 1-child = a term of the function
(descend 0-arc/1-arc ⇐⇒ exclude/include e)

A Boolean function represents a set family as

R(S, t) = {F ∈ 2E : r(F) = True}
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Example

s tc

a b
a

b

c

1

Left: Social Network Right Associated BDD
(dotted/solid = 0-/1-arc, 0-terminal is omitted)

R(s, t) = {{c}, {a,b}, {a, c}, {b, c}, {a,b, c}},
Boolean function = c+ ab+ ac+ bc+ abc = a(b+ b̄c) + āc
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Influence Computation via BDD

Once the BDD of R(S, t) is obtained, σ(S, t) is efficiently
computed by the bottom-up dynamic programming:

B(0) = 0, B(1) = 1, B(α) = (1− p(e))B(α0) + p(e)B(α1)

s tc

a b
a

b

c

1

B(1) = 1,B(c) = p,B(b) = p+ (1− p)p,
B(a) = p(p+ (1− p)p) + (1− p)p = p+ p2 − p3
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Construction of BDD: Two stage method

Base Case: BDD of R(s, t) (s, t ∈ V)
Constructed by new frontier-based search procedure

General Case: BDD of R(S, t) (S ⊆ V, t ∈ V)
Constructed by the union of base-case BDDs:

R(S, t) =
∪
s∈S

R(s, t)

If the set families are represented by BDDs,
these union/intersection/... are efficiently obtained

Note: The 1st step in the greedy algorithm computes all R(s, t)
Therefore this method is always faster than the naive method
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Frontier-Based Search
— Main Procedure —



Exhaustive enumeration then node merging

1: N0 = ∅
2: for k = 1, 2, . . . ,m do
3: Generate Nk from Nk−1 by including/excluding ek
4: end for

s tc

a b

N1 = {{a}, ∅}

N2 = {{a,b}, {a}, {b}, ∅}

N3 = {{a,b, c}, {a,b}, {a, c}, {a}, {b, c}, {b}, {c}, ∅}

...
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Exhaustive enumeration then node merging

a a

b b

a

b b

c c c c

a

b b

c c c c

1

a

b

c

1

13/35



Issue in exhaustive enumeration

Issue
It enumerates 2m nodes (too expensive)

We do not want to enumerate the nodes that

• ... must reach to the terminals (1 or 0)
• ... are “equivalent” to some other node

Frontier-Based search solves these issues!
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Frontier-Based Search

Exhaustive enumeration with node sharing
1: N0 = ∅
2: for k = 1, 2, . . . ,m do
3: Generate Nk from Nk−1 by including/excluding ek
4: Terminality check
5: Merge the equivalent nodes if possible
6: end for

Each node α ∈ Nk represents a family of equivalent sets R(α)

• F, F′ ⊆ {e1, . . . , ek} are equivalent iff ∀H ⊆ {ek+1, . . . , em},
reachability of G[F ∪ H] and G[F′ ∪ H] are the same

• α, α′ are equivalent iff for all elements represented by
these nodes are equivalent
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Configuration (aka. Mate Array)

A configuration ϕ is used to check the equivalence:

ϕ(α) = ϕ(α′) ⇒ α ≡ α′

Our configuration for s-t connected subgraphs
Let W ⊆ V be the frontier vertices, which is the set of vertices
incident to both processed and unprocessed edges

Then we define
ϕ(α) = reachability matrix from (W ∪ {s}) to (W ∪ {t})

on G[F] for some F ∈ R(α)

• ϕ(α) = ϕ(α′) then the feature reachabilities are the same.
This also proves the well-definedness

• The size is O(|W|2). Therefore the number nodes having
distinct configurations is 2O(|W|2)
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Terminality Check

• The included edges contains s-t path⇒ Merge α to 1
... Efficiently checked by the configuration: O(1)

• The excluded edges forms s-t cut⇒ Merge α to 0
... Checked by the BFS: O(m2) preproc. + O(|W|2) time

“Performing BFS in the frontier-based search” is expensive,
but necessarily to deal with larger networks
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Frontier-Based Search
— Additional Techniques —



Pruning Redundant Edges

We remove all edges that do not contribute s-t connectivity

• Checking existence of s-t path containing e ∈ E is NP-hard
(equivalent with the two commodity flow)

• However, since the network is small, we can solve this
problem by the enumeration by frontier-based search!
(Knuth’s SimPath algorithm)

“Using frontier-based search as a preprocessing for the
frontier-based search” seems a technically interesting idea
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Edge Ordering

The complexity of the frontier-based search depends on the
edge ordering (∵ W⇒ fast enumeration)

The same ordering should be used for all R(s, t) because we
perform set family manipulations

⇒ We used path decomposition + beam-search heuristics
proposed by [Inoue and Minato’16]
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Node Sharing among Different BDDs

The algorithm construct O(n2) BDDs R(s, t) for all s, t ∈ V,
which may have many similar sub-structures

⇒ Share them to reduce the total number of nodes [Minato’90]
(reduced about factor 2 in practice)

20/35



Other Influence-Spread Related
Problems



Other Influence-Spread Related Problems

Our algorithm constructs the BDDs for influence spread
⇒ many other problems can be solved using the BDDs

1. Random Sampling without Rejection
2. Conditional Influence Spread
3. Dynamic Probability Update
4. Optimization (Computing ∂σ(S)/∂p(e))

Details are omitted (perhaps well-known in BDD community)
These are important in viral marketing
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Experiments



Experimental Setting

• C++ (g++5.4.0 with -O3 option)

• BDD implementation: TdZdd library
https://github.com/kunisura/TdZdd

• 64-bit Ubuntu 16.04 LTS with an Intel Core i7-3930K 3.2 GHz
CPU and 64 GB RAM

• Real Networks: Koblenz Network Collection
http://konect.uni-koblenz.de/
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Basic Results on Typical Networks

Network n m Time [ms] BDD Size Shared Size Cardinality
South-African-Companies 11 26 0.1 12.1 472 2.2e+07

Southern-women-2 20 28 0.3 54.7 2,266 1.3e+08
Taro-exchange 22 78 4.1 1,119.2 277,756 1.6e+23

Zachary-karate-club 34 156 24.9 7,321.8 4,988,148 6.4e+46
Contiguous-USA 49 214 117.9 30,599.8 41,261,047 1.6e+64

American-Revolution 141 320 2.2 120.0 1,530,677 5.7e+95
Southern-women-1 50 178 — — — —
Club-membership 65 190 — — — —

Corporate-Leadership 64 198 — — — —

• Fast in solvable instances

• Very slow in unsolvable instances
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Experiments on Grid/Random Network

• Construct the following networks
1. n× 5 grid network
2. random network with the same n,m

• Compute the exact influence spread from the corner
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Results on Grid/Random Network (1/3)
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Results on Grid/Random Network (2/3)

0 20 40 60 80 100

101

103

105

107

Number of vertices n

BD
D
Si
ze
(b) BDD Size

Grid
Random

26/35



Results on Grid/Random Network (3/3)
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Example 3: Greedy Algorithm

• We used the Contiguous USA Network
• We performed the greedy algorithm to seek the most
influencial seeds of size k = 10.
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Results on Greedy Algorithm (1/3)
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Results on Greedy Algorithm (2/3)
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Results on Greedy Algorithm (3/3)
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Experiment 4: Exact vs Monte-Carlo

• We used the Contiguous USA Network
• Fix a set and compute influence spread by exact method
and Monte-Carlo method

• Compare the results for various number of MC samples
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Results for Exact vs Monte-Carlo
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• Fluctuates in 10−3, which is consistent with the theory
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Related Work



Related Work

• This is the first attempt for exact influence spread
computation

• No existing method for enumerating s-t connected
subgraphs efficiently
(An algorithms for undirected case is known in the
literature of “Network Reliability” (e.g., [Valiant’79]),
but it cannot be extend to our directed case)
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Conclusion



Conclusion / Future Work

Conclusion

1. We proposed the first algorithm to compute the influence
spread exactly

2. It constructs the BDDs of S-u connected subgraphs by new
frontier-based search and set family manipulations

3. Real networks with m ≈ 100 were solved

Future Work

1. We want to solve m ≈ 200 networks
2. Exact influence maximization
NP-hard problem with #P-hard function evaluation

This slide is available at:
http://www.prefield.com/slide/maehara2017exact_slide.pdf
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