Exact Computation of Influence Spread by Binary Decision Diagrams

Takanori Maehara¹⁾, Hirofumi Suzuki²⁾, Masakazu Ishihata²⁾ 1) Riken Center for Advanced Intelligence Project 2) Hokkaido University

August 4, 2017 @ ERATO 感謝祭

Introduction

Viral Marketing

Marketing strategy that uses social networks to promote a product, i.e.,

Giving products for some individuals (seeds) to propagate information over the social network by *word-of-mouth effect*

Objective

Estimate (and Maximize) the size of influence spread

Mathematical Model (Independent Cascade Model)

A social network is modeled as a directed graph G = (V, E; p)(V: users, E: communications, p(e): activation probability)

Independent Cascade Model [Goldenberg+'01] Information propagates from $S \subseteq V$ (seeds):

- 1. At the first step, the seeds $s \in S$ become *active*
- 2. When $u \in V$ becomes *active*, its neighbor $v \in N(u)$ becomes *active* with probability p(u, v)

Influence spread $\sigma(S)$ = expected number of activated users u

In the IC model, each edge is examined once. Therefore it is equivalent to the following "pre coin-flipping" model:

Independent Cascade Model (Coin-Flipping)

 $\sigma(S)$ is the expected number of reachable vertices from S in a random graph where $e \in E$ appears with probability p(e)

maximize $\sigma(S)$ subject to $|S| \le k$

- (Good News) $\sigma(S)$ is a monotone submodular function \Rightarrow The greedy algorithm attains 1 - 1/e approximation by polynomial number of $\sigma(\cdot)$ evaluations
- (Bad News) Evaluation of $\sigma(\cdot)$ is #P-Hard

Existing Work: Monte-Carlo simulation (e.g., [Borgs+'14])

- Simulate the model $\Omega(1/\epsilon^2)$ times to obtain $(1 \pm \epsilon)$ approximation of $\sigma(S)$
- Suitable for rough estimation of $\sigma(S)$ in large networks

Our Goal

Compute $\sigma(S)$ **exactly** on small networks (e.g., $m \approx 100$) (Naive method cannot be used because of 2¹⁰⁰ configurations)

Why exact computation?

- Precise analysis on small networks is important because social networks consist from many small communities
- Exact method can be used to evaluate the practical accuracy of Monte-Carlo simulations
- Practical algorithm for #P-Hard problem is itself interesting topic in Computer Science

Our Contributions

- We proposed the first (non-trivial) algorithm for computing σ(S) exactly
- It runs on $m \approx$ 100 networks in a reasonable time
- It can be used to solve another influence-spread related problems (e.g., sampling, conditional expectation, ...)

Our Approach

- Construct the **binary decision diagrams (BDDs)** for *S*-*t* connected subgraphs
- Perform **dynamic programming** to compute the influence spread

Proposed Algorithm (Outline)

Reformulation of Influence Spread

Let us define

·
$$p(F) = \prod_{e \in F} p(e) \prod_{e' \notin F} (1 - p(e'))$$

· $\mathcal{R}(S, t) := \{F \subseteq E : G[F] \text{ has a } S - t \text{ path}\}$

Then the influence spread is given by

$$\sigma(S) = \sum_{t \in V} \sigma(S, t)$$

where

$$\sigma(S,t) = \sum_{F \in \mathcal{R}(S,t)} p(F) =: p(\mathcal{R}(S,t))$$

We compute $\sigma(S)$ by using the above formulas ... An efficient algorithm to enumerate $\mathcal{R}(S,t)$ is required We maintain $\mathcal{R}(S, t)$ by a binary decision diagram (BDD)

BDD

A compact representation of a Boolean function

- A DAG with single root and two terminals (0 and 1)
- Each node has two children (0-child and 1-child)
- Each node is associated with a variable $e \in E$

A path from the root to 1-child = a term of the function (descend 0-arc/1-arc \iff exclude/include e)

A Boolean function represents a set family as

$$\mathcal{R}(S,t) = \{F \in 2^E : r(F) = \mathsf{True}\}\$$

Example

Left: Social Network Right Associated BDD (dotted/solid = 0-/1-arc, 0-terminal is omitted)

 $\mathcal{R}(s,t) = \{\{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\},\$ Boolean function = $c + ab + ac + bc + abc = a(b + \bar{b}c) + \bar{a}c$

Influence Computation via BDD

Once the BDD of $\mathcal{R}(S, t)$ is obtained, $\sigma(S, t)$ is efficiently computed by the bottom-up dynamic programming:

 $\mathcal{B}(0) = 0, \ \mathcal{B}(1) = 1, \ \mathcal{B}(\alpha) = (1 - p(e))\mathcal{B}(\alpha_0) + p(e)\mathcal{B}(\alpha_1)$

$$\mathcal{B}(1) = 1, \mathcal{B}(c) = p, \mathcal{B}(b) = p + (1 - p)p,$$

$$\mathcal{B}(a) = p(p + (1 - p)p) + (1 - p)p = p + p^2 - p^3$$

Construction of BDD: Two stage method

Base Case: BDD of $\mathcal{R}(s,t)$ ($s,t \in V$) Constructed by new *frontier-based search* procedure

General Case: BDD of $\mathcal{R}(S, t)$ ($S \subseteq V, t \in V$) Constructed by the union of base-case BDDs:

$$\mathcal{R}(S,t) = \bigcup_{s \in S} \mathcal{R}(s,t)$$

If the set families are represented by BDDs, these union/intersection/... are efficiently obtained

Note: The 1st step in the greedy algorithm computes all $\mathcal{R}(s,t)$ Therefore this method is always faster than the naive method

Frontier-Based Search — Main Procedure —

Exhaustive enumeration then node merging

- 1: $\mathcal{N}_0 = \emptyset$
- 2: for k = 1, 2, ..., m do
- 3: Generate \mathcal{N}_k from \mathcal{N}_{k-1} by including/excluding e_k
- 4: end for

$$\mathcal{N}_{1} = \{\{a\}, \emptyset\}$$
$$\mathcal{N}_{2} = \{\{a, b\}, \{a\}, \{b\}, \emptyset\}$$
$$\mathcal{N}_{3} = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\}, \{b, c\}, \{b\}, \{c\}, \emptyset\}$$

Exhaustive enumeration then node merging

Issue

It enumerates 2^{*m*} nodes (too expensive)

We do not want to enumerate the nodes that

- ... must reach to the terminals (1 or 0)
- \cdot ... are "equivalent" to some other node

Frontier-Based search solves these issues!

Exhaustive enumeration with node sharing

- 1: $\mathcal{N}_0 = \emptyset$
- 2: for k = 1, 2, ..., m do
- 3: Generate \mathcal{N}_k from \mathcal{N}_{k-1} by including/excluding e_k
- 4: Terminality check
- 5: Merge the equivalent nodes if possible

6: end for

Each node $\alpha \in \mathcal{N}_k$ represents a family of *equivalent* sets $R(\alpha)$

- $F, F' \subseteq \{e_1, \ldots, e_k\}$ are equivalent iff $\forall H \subseteq \{e_{k+1}, \ldots, e_m\}$, reachability of $G[F \cup H]$ and $G[F' \cup H]$ are the same
- + α, α' are equivalent iff for all elements represented by these nodes are equivalent

A configuration ϕ is used to check the equivalence:

 $\phi(\alpha) = \phi(\alpha') \Rightarrow \alpha \equiv \alpha'$

Our configuration for *s*-*t* connected subgraphs

Let $W \subseteq V$ be the *frontier vertices*, which is the set of vertices incident to both processed and unprocessed edges

Then we define

 $\phi(\alpha) = reachability matrix from (W \cup \{s\}) \text{ to } (W \cup \{t\})$ on G[F] for some $F \in R(\alpha)$

- $\phi(\alpha) = \phi(\alpha')$ then the feature reachabilities are the same. This also proves the well-definedness
- The size is $O(|W|^2)$. Therefore the number nodes having distinct configurations is $2^{O(|W|^2)}$

- The included edges contains s-t path \Rightarrow Merge α to 1 ... Efficiently checked by the configuration: O(1)
- The excluded edges forms s-t cut \Rightarrow Merge α to 0 ... Checked by the BFS: $O(m^2)$ preproc. + $O(|W|^2)$ time

"Performing BFS in the frontier-based search" is expensive, but necessarily to deal with larger networks

Frontier-Based Search — Additional Techniques —

We remove all edges that do not contribute s-t connectivity

- Checking existence of s-t path containing $e \in E$ is NP-hard (equivalent with the two commodity flow)
- However, since the network is small, we can solve this problem by the enumeration by frontier-based search! (Knuth's SimPath algorithm)

"Using frontier-based search as a preprocessing for the frontier-based search" seems a technically interesting idea

- The complexity of the frontier-based search depends on the edge ordering ($:: W \Rightarrow$ fast enumeration)
- The same ordering should be used for all $\mathcal{R}(s,t)$ because we perform set family manipulations
- \Rightarrow We used path decomposition + beam-search heuristics proposed by [Inoue and Minato'16]

- The algorithm construct $O(n^2)$ BDDs $\mathcal{R}(s,t)$ for all $s,t \in V$, which may have many similar sub-structures
- \Rightarrow Share them to reduce the total number of nodes [Minato'90] (reduced about factor 2 in practice)

Other Influence-Spread Related Problems

Our algorithm constructs the BDDs for influence spread \Rightarrow many other problems can be solved using the BDDs

- 1. Random Sampling without Rejection
- 2. Conditional Influence Spread
- 3. Dynamic Probability Update
- 4. Optimization (Computing $\partial \sigma(S) / \partial p(e)$)

Details are omitted (perhaps well-known in BDD community) These are important in viral marketing Experiments

- C++ (g++5.4.0 with -O3 option)
- BDD implementation: TdZdd library https://github.com/kunisura/TdZdd
- 64-bit Ubuntu 16.04 LTS with an Intel Core i7-3930K 3.2 GHz CPU and 64 GB RAM
- Real Networks: Koblenz Network Collection http://konect.uni-koblenz.de/

Basic Results on Typical Networks

Network	n	т	Time [ms]	BDD Size	Shared Size	Cardinality
South-African-Companies	11	26	0.1	12.1	472	2.2e+07
Southern-women-2	20	28	0.3	54.7	2,266	1.3e+08
Taro-exchange	22	78	4.1	1,119.2	277,756	1.6e+23
Zachary-karate-club	34	156	24.9	7,321.8	4,988,148	6.4e+46
Contiguous-USA	49	214	117.9	30,599.8	41,261,047	1.6e+64
American-Revolution	141	320	2.2	120.0	1,530,677	5.7e+95
Southern-women-1	50	178	_	_	_	_
Club-membership	65	190	—	—	-	_
Corporate-Leadership	64	198	—	—	_	_

- Fast in solvable instances
- Very slow in unsolvable instances

- Construct the following networks
 - 1. $n \times 5$ grid network
 - 2. random network with the same *n*, *m*
- $\cdot\,$ Compute the exact influence spread from the corner

Results on Grid/Random Network (1/3)

(a) Influence Probability

Results on Grid/Random Network (2/3)

(b) BDD Size

Results on Grid/Random Network (3/3)

(c) Time [s]

- We used the Contiguous USA Network
- We performed the greedy algorithm to seek the most influencial seeds of size k = 10.

Results on Greedy Algorithm (1/3)

(a) Influence spread

Results on Greedy Algorithm (2/3)

(b) Shared Size

Results on Greedy Algorithm (3/3)

(c) Time [s]

- \cdot We used the Contiguous USA Network
- Fix a set and compute influence spread by exact method and Monte-Carlo method
- Compare the results for various number of MC samples

Results for Exact vs Monte-Carlo

• Fluctuates in 10^{-3} , which is consistent with the theory

Related Work

- This is the first attempt for exact influence spread computation
- No existing method for enumerating s-t connected subgraphs efficiently (An algorithms for undirected case is known in the literature of "Network Reliability" (e.g., [Valiant'79]), but it cannot be extend to our directed case)

Conclusion

Conclusion / Future Work

Conclusion

- We proposed the first algorithm to compute the influence spread exactly
- 2. It constructs the BDDs of *S*-*u* connected subgraphs by **new frontier-based search** and **set family manipulations**
- 3. Real networks with $m \approx 100$ were solved

Future Work

- 1. We want to solve $m \approx 200$ networks
- 2. Exact influence maximization NP-hard problem with #P-hard function evaluation

This slide is available at: http://www.prefield.com/slide/maehara2017exact_slide.pdf ^{35/35} Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier.

Maximizing social influence in nearly optimal time. In *SODA*, pages 946–957, 2014.

Jacob Goldenberg, Barak Libai, and Eitan Muller.
Talk of the network: A complex systems look at the underlying process of word-of-mouth.
Marketing Letters, 12(3):211–223, 2001.

 Yuma Inoue and Shinichi Minato.
 Acceleration of ZDD construction for subgraph enumeration via path-width optimization.
 TCS-TR-A-16-80. Hokkaido University, 2016.

David Kempe, Jon Kleinberg, and Éva Tardos.

Maximizing the spread of influence through a social network.

In KDD, pages 137–146, 2003.

- Shinichi Minato, Nagisa Ishiura, and Shuzo Yajima.
 Shared binary decision diagram with attributed edges for efficient boolean function manipulation.
 In DAC, pages 52–57, 1990.
- Matthew Richardson and Pedro Domingos.
 Mining knowledge-sharing sites for viral marketing.
 In KDD, pages 61–70, 2002.
 - 📔 Leslie G Valiant.

The complexity of enumeration and reliability problems. *SIAM Journal on Computing*, 8(3):410–421, 1979.