Exact Computation of Influence Spread
by Binary Decision Diagrams

Takanori Maehara", Hirofumi Suzuki?, Masakazu Ishihata?

1) Riken Center for Advanced Intelligence Project
2) Hokkaido University

August 4, 2017 @ ERATO R%EE%

Introduction

Viral Marketing [Richardson-Domingos’02]

Viral Marketing
Marketing strategy that uses social networks to promote a
product, i.e.,

Giving products for some individuals (seeds) to propagate
information over the social network by word-of-mouth effect

Objective
Estimate (and Maximize) the size of influence spread

1/35

Mathematical Model (Independent Cascade Model)

A social network is modeled as a directed graph G = (V, E; p)
(V: users, E: communications, p(e): activation probability)

Independent Cascade Model [Goldenberg+'01]
Information propagates from S C V (seeds):
1. At the first step, the seeds s € S become active

2. When u € V becomes active, its neighbor v € N(u)
becomes active with probability p(u, V)

Influence spread o(S) = expected number of activated users u

2/35

Independent Cascade Model (Coin-Flipping ver.)

In the IC model, each edge is examined once. Therefore it is
equivalent to the following “pre coin-flipping” model:

Independent Cascade Model (Coin-Flipping)
o(S) is the expected number of reachable vertices from S
in a random graph where e € E appears with probability p(e)

cl

3/35

Influence Maximization Problem [Kempe+'03]

maximize o(S) subject to [S| < k

- (Good News) o(S) is a monotone submodular function
= The greedy algorithm attains 1 —1/e approximation
by polynomial number of o(+) evaluations

- (Bad News) Evaluation of o(-) is #P-Hard

Existing Work: Monte-Carlo simulation (e.g., [Borgs+'14])

- Simulate the model Q(1/€?) times to obtain (1 ¢)
approximation of o(S)

- Suitable for rough estimation of ¢(S) in large networks

4/35

This Study: Exact Computation of Influence Spread

Our Goal
Compute o(S) exactly on small networks (e.g., m ~ 100)
(Naive method cannot be used because of 2'°° configurations)

Why exact computation?
- Precise analysis on small networks is important because

social networks consist from many small communities

- Exact method can be used to evaluate the practical
accuracy of Monte-Carlo simulations

- Practical algorithm for #P-Hard problem is itself
interesting topic in Computer Science

5/35

Our Contributions

Our Contributions
- We proposed the first (non-trivial) algorithm for
computing o(S) exactly
- It runs on m =~ 100 networks in a reasonable time

- It can be used to solve another influence-spread related
problems (e.g., sampling, conditional expectation, ...)

Our Approach
- Construct the binary decision diagrams (BDDs) for S-t
connected subgraphs

- Perform dynamic programming to compute the influence
spread

6/35

Proposed Algorithm (Outline)

Reformulation of Influence Spread

Let us define

=1Ire) [T —p(e))

ecF e'&F
- R(S,t) := {F C E: G[F] has a S-t path}

Then the influence spread is given by
a(S)=> o(S,1)
tev
where

= > p(F R(S,1))

FER(S,t)

We compute o(S) by using the above formulas

.. An efficient algorithm to enumerate R(S,t) is required
7135

Binary Decision Diagram (BDD)

We maintain R(S, t) by a binary decision diagram (BDD)
BDD
A compact representation of a Boolean function

- A DAG with single root and two terminals (0 and 1)
- Each node has two children (0-child and 1-child)
- Each node is associated with a variable e € E

A path from the root to 1-child = a term of the function
(descend 0-arc/1-arc < exclude/include e)

A Boolean function represents a set family as

R(S,t) = {F € 2 : r(F) = True}

8/35

Left: Social Network Right Associated BDD
(dotted/solid = 0-/1-arc, O-terminal is omitted)

R(S’t) = {{C}7{G,b},{G,C},{b,C},{a,b,C}}, ~
Boolean function = ¢+ ab + ac + bc + abc = a(b + bc) + ac

9/35

Influence Computation via BDD

Once the BDD of R(S,t) is obtained, o(S,t) is efficiently
computed by the bottom-up dynamic programming:

B(0) =0, B(1) =1, B(e) = (1 - p(e))B(a) + p(e)B(an)

B(1) =1,B(c) = p,B(b) = p+ (1 - p)p,
B(a)=p(p+(1—p)p)+ (1 —p)p=p+p*>—p’

10/35

Construction of BDD: Two stage method

Base Case: BDD of R(s,t) (s,t € V)
Constructed by new frontier-based search procedure

General Case: BDD of R(S,t) (SC V,t € V)
Constructed by the union of base-case BDDs:

R(S,t) = [R(s,1)

ses

If the set families are represented by BDDs,
these union/intersection/... are efficiently obtained

Note: The 1st step in the greedy algorithm computes all R(s,t)
Therefore this method is always faster than the naive method

11/35

Frontier-Based Search
— Main Procedure —

Exhaustive enumeration then node merging

1 No = @

2. fork=1,2,...,mdo

3 Generate N, from N,_4 by including/excluding e,
4 end for

a O&
s(L»C Ot

Ar = ({a),0}
NZ = {{Cl, b}v {Cl}, {b}7 Q)}
Ns ={{a,b,c},{a,b},{a,c},{a},{b,c},{b} {c},0}

12/35

Exhaustive enumeration then node merging

g b ©

13/35

Issue in exhaustive enumeration

Issue
It enumerates 2™ nodes (too expensive)

We do not want to enumerate the nodes that

- ... must reach to the terminals (1 or 0)
- ... are “equivalent” to some other node

Frontier-Based search solves these issues!

14/35

Frontier-Based Search

Exhaustive enumeration with node sharing
1 No = @

2. fork=1,2,...,mdo

3. Generate N, from N,_; by including/excluding ey,

4 Terminality check

5. Merge the equivalent nodes if possible

6: end for

Each node a € N, represents a family of equivalent sets R(«)

- F,F C{ey,...,ex} are equivalent iff VH C {exy1,...,em},
reachability of G[F U H] and G[F’ U H] are the same

- «a,a’ are equivalent iff for all elements represented by
these nodes are equivalent

15/35

Configuration (aka. Mate Array)

A configuration ¢ is used to check the equivalence:
#(a) = ¢(a’) = a=d

Our configuration for s-t connected subgraphs
Let W C V be the frontier vertices, which is the set of vertices
incident to both processed and unprocessed edges

Then we define
¢(a) = reachability matrix from (WU {s}) to (WU {t})
on G[F] for some F € R(«)

- () = (') then the feature reachabilities are the same.
This also proves the well-definedness

- The size is O(|W|?). Therefore the number nodes having

isti i is 20(IW?)
distinct configurations is 2 —_—

Terminality Check

- The included edges contains s-t path = Merge « to 1
.. Efficiently checked by the configuration: O(1)

- The excluded edges forms s-t cut = Merge o to 0
.. Checked by the BFS: O(m?) preproc. + O(|W|?) time

“Performing BFS in the frontier-based search” is expensive,
but necessarily to deal with larger networks

17/35

Frontier-Based Search
— Additional Techniques —

Pruning Redundant Edges

We remove all edges that do not contribute s-t connectivity

- Checking existence of s-t path containing e € E is NP-hard
(equivalent with the two commodity flow)

- However, since the network is small, we can solve this
problem by the enumeration by frontier-based search!
(Knuth’s SimPath algorithm)

“Using frontier-based search as a preprocessing for the
frontier-based search” seems a technically interesting idea

18/35

Edge Ordering

The complexity of the frontier-based search depends on the
edge ordering (.- W = fast enumeration)

The same ordering should be used for all R(s,t) because we
perform set family manipulations

= We used path decomposition + beam-search heuristics
proposed by [Inoue and Minato"16]

19/35

Node Sharing among Different BDDs

The algorithm construct O(n?) BDDs R(s, t) for all s,t € V,
which may have many similar sub-structures

= Share them to reduce the total number of nodes [Minato’90]
(reduced about factor 2 in practice)

20/35

Other Influence-Spread Related
Problems

Other Influence-Spread Related Problems

Our algorithm constructs the BDDs for influence spread
= many other problems can be solved using the BDDs

1. Random Sampling without Rejection

2. Conditional Influence Spread

3. Dynamic Probability Update

4. Optimization (Computing da(S)/dp(e))

Details are omitted (perhaps well-known in BDD community)
These are important in viral marketing

21/35

Experiments

Experimental Setting

- C++ (g++5.4.0 with -03 option)

- BDD implementation: TdZdd library
https://github.com/kunisura/TdzZdd

+ 64-bit Ubuntu 16.04 LTS with an Intel Core i7-3930K 3.2 GHz
CPU and 64 GB RAM

- Real Networks: Koblenz Network Collection
http://konect.uni-koblenz.de/

22/35

Basic Results on Typical Networks

Network n m Time [ms] BDD Size Shared Size Cardinality
South-African-Companies 11 26 0.1 121 472 2.2e+07
Southern-women-2 20 28 0.3 54.7 2,266 1.3e+08
Taro-exchange 22 78 41 1,119.2 277,756 1.6e+23
Zachary-karate-club 34 156 249 73218 4,988,148 6.4e+46
Contiguous-USA 49 214 117.9 30,599.8 41,261,047 1.6e+64
American-Revolution 141 320 2.2 120.0 1,530,677 5.7e+95
Southern-women-1 50178 = = = =
Club-membership 65 190 = = = =
Corporate-Leadership 64 198 — — — —

- Fast in solvable instances

- Very slow in unsolvable instances

23/35

Experiments on Grid/Random Network

- Construct the following networks

1. n x5 grid network
2. random network with the same n,m

- Compute the exact influence spread from the corner

24/35

Results on Grid/Random Network (1/3)

(a) Influence Probability

100 =T T T T |
>
= 1075]
=
©
Q
e
o »]Of'IO L .
)
O
c
1)
= B |
‘E 10
—— Grid
—a— Random
10—20 [\ \ \ \]

|
0 20 40 60 80 100

Number of vertices n
25/35

Results on Grid/Random Network (2/3)

(b) BDD Size
T T

107 F .
N 10° | h
(Vp]
()
o

10° .

; —— Grid
100 —=— Random | |
| |

0 20 40 60 80 100

Number of vertices n
26/35

Results on Grid/Random Network (3/3)

(c) Time [s]

Time

—— Grid
—=— Random

10—4 L | | | \
0 20 40 60 80 100

Number of vertices n

27/35

Example 3: Greedy Algorithm

- We used the Contiguous USA Network

- We performed the greedy algorithm to seek the most
influencial seeds of size k = 10.

28/35

Results on Greedy Algorithm (1/3)

(a) Influence spread

T
15 N
o
©
L
(@R
n 10 F |
(O]
(@]
[
(]
5
=
S s5f |
—e— ContUSA
—m— Zachary
0 | | | | |
2 4 6 8 10

Number of steps
29/35

Results on Greedy Algorithm (2/3)

(b) Shared Size

10° e E
807 e
wn C]
o r = B
CIL.) [i
© [i
&

10° 1 E

i —e— CONtUSA ||

i —m— Zachary ||
5 | | | | |
10 2 4 6 8 10

Number of steps
30/35

Results on Greedy Algorithm (3/3)

(c) Time [s]
T T
102 ¢ E
& 10" | E
o B
= 1
10° ¢ 1
i —e— CoNntUSA ||
—=— Zachary
-1 | | |]]
10 2 4 6 8 10

Number of steps
31/35

Experiment 4: Exact vs Monte-Carlo

- We used the Contiguous USA Network

- Fix a set and compute influence spread by exact method
and Monte-Carlo method

- Compare the results for various number of MC samples

32/35

Results for Exact vs Monte-Carlo

o) 103

« I

S

= 1-100F .
=

o M/\ W
2

© 0 B
£ 0-10 I

)

(%]

(@]

2 —1-10°]
+—

G

o

e —2.100 ‘
L

| | | |
0 02 04 06 0.8 1
Number of samples .17

- Fluctuates in 1073, which is consistent with the theory

33/35

Related Work

- This is the first attempt for exact influence spread
computation

- No existing method for enumerating s-t connected
subgraphs efficiently
(An algorithms for undirected case is known in the
literature of “Network Reliability” (e.g., [Valiant'79]),
but it cannot be extend to our directed case)

34/35

Conclusion

Conclusion / Future Work

Conclusion
1. We proposed the first algorithm to compute the influence
spread exactly

2. It constructs the BDDs of S-u connected subgraphs by new
frontier-based search and set family manipulations

3. Real networks with m ~ 100 were solved

Future Work

1. We want to solve m ~ 200 networks

2. Exact influence maximization
NP-hard problem with #P-hard function evaluation

This slide is available at:

. . . 35/35
http://www.prefield.com/slide/maehara2017exact_slide.pdf

http://www.prefield.com/slide/maehara2017exact_slide.pdf

Christian Borgs, Michael Brautbar, Jennifer Chayes, and
Brendan Lucier.

Maximizing social influence in nearly optimal time.

In SODA, pages 946-957, 2014,

Jacob Goldenberg, Barak Libai, and Eitan Muller.
Talk of the network: A complex systems look at the
underlying process of word-of-mouth.

Marketing Letters, 12(3):211-223, 2001.

Yuma Inoue and Shinichi Minato.

Acceleration of ZDD construction for subgraph
enumeration via path-width optimization.
TCS-TR-A-16-80. Hokkaido University, 2016.

David Kempe, Jon Kleinberg, and Eva Tardos.

35/35

Maximizing the spread of influence through a social
network.
In KDD, pages 137146, 2003.

Shinichi Minato, Nagisa Ishiura, and Shuzo Yajima.

Shared binary decision diagram with attributed edges for
efficient boolean function manipulation.

In DAC, pages 52-57, 1990.

Matthew Richardson and Pedro Domingos.

Mining knowledge-sharing sites for viral marketing.

In KDD, pages 61-70, 2002.

Leslie G Valiant.

The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410-421, 1979.

35/35

	Introduction
	Proposed Algorithm (Outline)
	Frontier-Based Search — Main Procedure —
	Frontier-Based Search — Additional Techniques —
	Other Influence-Spread Related Problems
	Experiments
	Related Work
	Conclusion

