
Exact Computation of Influence Spread
by Binary Decision Diagrams

Takanori Maehara1), Hirofumi Suzuki2), Masakazu Ishihata2)
1) Riken Center for Advanced Intelligence Project
2) Hokkaido University

August 4, 2017 @ ERATO感謝祭



Introduction



Viral Marketing [Richardson–Domingos’02]

Viral Marketing
Marketing strategy that uses social networks to promote a
product, i.e.,

Giving products for some individuals (seeds) to propagate
information over the social network by word-of-mouth effect

Objective
Estimate (and Maximize) the size of influence spread

1/35



Mathematical Model (Independent Cascade Model)

A social network is modeled as a directed graph G = (V, E;p)
(V: users, E: communications, p(e): activation probability)

Independent Cascade Model [Goldenberg+’01]
Information propagates from S ⊆ V (seeds):
1. At the first step, the seeds s ∈ S become active
2. When u ∈ V becomes active, its neighbor v ∈ N(u)
becomes active with probability p(u, v)

Influence spread σ(S) = expected number of activated users u

⇒ ⇒

2/35



Independent Cascade Model (Coin-Flipping ver.)

In the IC model, each edge is examined once. Therefore it is
equivalent to the following “pre coin-flipping” model:

Independent Cascade Model (Coin-Flipping)
σ(S) is the expected number of reachable vertices from S
in a random graph where e ∈ E appears with probability p(e)

3/35



Influence Maximization Problem [Kempe+’03]

maximize σ(S) subject to |S| ≤ k

• (Good News) σ(S) is a monotone submodular function
⇒ The greedy algorithm attains 1− 1/e approximation
by polynomial number of σ(·) evaluations

• (Bad News) Evaluation of σ(·) is #P-Hard

Existing Work: Monte-Carlo simulation (e.g., [Borgs+’14])

• Simulate the model Ω(1/ϵ2) times to obtain (1± ϵ)

approximation of σ(S)
• Suitable for rough estimation of σ(S) in large networks

4/35



This Study: Exact Computation of Influence Spread

Our Goal
Compute σ(S) exactly on small networks (e.g., m ≈ 100)
(Naive method cannot be used because of 2100 configurations)

Why exact computation?

• Precise analysis on small networks is important because
social networks consist from many small communities

• Exact method can be used to evaluate the practical
accuracy of Monte-Carlo simulations

• Practical algorithm for #P-Hard problem is itself
interesting topic in Computer Science

5/35



Our Contributions

Our Contributions

• We proposed the first (non-trivial) algorithm for
computing σ(S) exactly

• It runs on m ≈ 100 networks in a reasonable time
• It can be used to solve another influence-spread related
problems (e.g., sampling, conditional expectation, ...)

Our Approach

• Construct the binary decision diagrams (BDDs) for S-t
connected subgraphs

• Perform dynamic programming to compute the influence
spread

6/35



Proposed Algorithm (Outline)



Reformulation of Influence Spread

Let us define

• p(F) =
∏
e∈F

p(e)
∏
e′ ̸∈F

(1− p(e′))

• R(S, t) := {F ⊆ E : G[F] has a S-t path}

Then the influence spread is given by

σ(S) =
∑
t∈V

σ(S, t)

where

σ(S, t) =
∑

F∈R(S,t)
p(F) =: p(R(S, t))

We compute σ(S) by using the above formulas
... An efficient algorithm to enumerate R(S, t) is required

7/35



Binary Decision Diagram (BDD)

We maintain R(S, t) by a binary decision diagram (BDD)

BDD
A compact representation of a Boolean function

- A DAG with single root and two terminals (0 and 1)
- Each node has two children (0-child and 1-child)
- Each node is associated with a variable e ∈ E

A path from the root to 1-child = a term of the function
(descend 0-arc/1-arc ⇐⇒ exclude/include e)

A Boolean function represents a set family as

R(S, t) = {F ∈ 2E : r(F) = True}

8/35



Example

s tc

a b
a

b

c

1

Left: Social Network Right Associated BDD
(dotted/solid = 0-/1-arc, 0-terminal is omitted)

R(s, t) = {{c}, {a,b}, {a, c}, {b, c}, {a,b, c}},
Boolean function = c+ ab+ ac+ bc+ abc = a(b+ b̄c) + āc

9/35



Influence Computation via BDD

Once the BDD of R(S, t) is obtained, σ(S, t) is efficiently
computed by the bottom-up dynamic programming:

B(0) = 0, B(1) = 1, B(α) = (1− p(e))B(α0) + p(e)B(α1)

s tc

a b
a

b

c

1

B(1) = 1,B(c) = p,B(b) = p+ (1− p)p,
B(a) = p(p+ (1− p)p) + (1− p)p = p+ p2 − p3

10/35



Construction of BDD: Two stage method

Base Case: BDD of R(s, t) (s, t ∈ V)
Constructed by new frontier-based search procedure

General Case: BDD of R(S, t) (S ⊆ V, t ∈ V)
Constructed by the union of base-case BDDs:

R(S, t) =
∪
s∈S

R(s, t)

If the set families are represented by BDDs,
these union/intersection/... are efficiently obtained

Note: The 1st step in the greedy algorithm computes all R(s, t)
Therefore this method is always faster than the naive method

11/35



Frontier-Based Search
— Main Procedure —



Exhaustive enumeration then node merging

1: N0 = ∅
2: for k = 1, 2, . . . ,m do
3: Generate Nk from Nk−1 by including/excluding ek
4: end for

s tc

a b

N1 = {{a}, ∅}

N2 = {{a,b}, {a}, {b}, ∅}

N3 = {{a,b, c}, {a,b}, {a, c}, {a}, {b, c}, {b}, {c}, ∅}

...

12/35



Exhaustive enumeration then node merging

a a

b b

a

b b

c c c c

a

b b

c c c c

1

a

b

c

1

13/35



Issue in exhaustive enumeration

Issue
It enumerates 2m nodes (too expensive)

We do not want to enumerate the nodes that

• ... must reach to the terminals (1 or 0)
• ... are “equivalent” to some other node

Frontier-Based search solves these issues!

14/35



Frontier-Based Search

Exhaustive enumeration with node sharing
1: N0 = ∅
2: for k = 1, 2, . . . ,m do
3: Generate Nk from Nk−1 by including/excluding ek
4: Terminality check
5: Merge the equivalent nodes if possible
6: end for

Each node α ∈ Nk represents a family of equivalent sets R(α)

• F, F′ ⊆ {e1, . . . , ek} are equivalent iff ∀H ⊆ {ek+1, . . . , em},
reachability of G[F ∪ H] and G[F′ ∪ H] are the same

• α, α′ are equivalent iff for all elements represented by
these nodes are equivalent

15/35



Configuration (aka. Mate Array)

A configuration ϕ is used to check the equivalence:

ϕ(α) = ϕ(α′) ⇒ α ≡ α′

Our configuration for s-t connected subgraphs
Let W ⊆ V be the frontier vertices, which is the set of vertices
incident to both processed and unprocessed edges

Then we define
ϕ(α) = reachability matrix from (W ∪ {s}) to (W ∪ {t})

on G[F] for some F ∈ R(α)

• ϕ(α) = ϕ(α′) then the feature reachabilities are the same.
This also proves the well-definedness

• The size is O(|W|2). Therefore the number nodes having
distinct configurations is 2O(|W|2)

16/35



Terminality Check

• The included edges contains s-t path⇒ Merge α to 1
... Efficiently checked by the configuration: O(1)

• The excluded edges forms s-t cut⇒ Merge α to 0
... Checked by the BFS: O(m2) preproc. + O(|W|2) time

“Performing BFS in the frontier-based search” is expensive,
but necessarily to deal with larger networks

17/35



Frontier-Based Search
— Additional Techniques —



Pruning Redundant Edges

We remove all edges that do not contribute s-t connectivity

• Checking existence of s-t path containing e ∈ E is NP-hard
(equivalent with the two commodity flow)

• However, since the network is small, we can solve this
problem by the enumeration by frontier-based search!
(Knuth’s SimPath algorithm)

“Using frontier-based search as a preprocessing for the
frontier-based search” seems a technically interesting idea

18/35



Edge Ordering

The complexity of the frontier-based search depends on the
edge ordering (∵ W⇒ fast enumeration)

The same ordering should be used for all R(s, t) because we
perform set family manipulations

⇒ We used path decomposition + beam-search heuristics
proposed by [Inoue and Minato’16]

19/35



Node Sharing among Different BDDs

The algorithm construct O(n2) BDDs R(s, t) for all s, t ∈ V,
which may have many similar sub-structures

⇒ Share them to reduce the total number of nodes [Minato’90]
(reduced about factor 2 in practice)

20/35



Other Influence-Spread Related
Problems



Other Influence-Spread Related Problems

Our algorithm constructs the BDDs for influence spread
⇒ many other problems can be solved using the BDDs

1. Random Sampling without Rejection
2. Conditional Influence Spread
3. Dynamic Probability Update
4. Optimization (Computing ∂σ(S)/∂p(e))

Details are omitted (perhaps well-known in BDD community)
These are important in viral marketing

21/35



Experiments



Experimental Setting

• C++ (g++5.4.0 with -O3 option)

• BDD implementation: TdZdd library
https://github.com/kunisura/TdZdd

• 64-bit Ubuntu 16.04 LTS with an Intel Core i7-3930K 3.2 GHz
CPU and 64 GB RAM

• Real Networks: Koblenz Network Collection
http://konect.uni-koblenz.de/

22/35



Basic Results on Typical Networks

Network n m Time [ms] BDD Size Shared Size Cardinality
South-African-Companies 11 26 0.1 12.1 472 2.2e+07

Southern-women-2 20 28 0.3 54.7 2,266 1.3e+08
Taro-exchange 22 78 4.1 1,119.2 277,756 1.6e+23

Zachary-karate-club 34 156 24.9 7,321.8 4,988,148 6.4e+46
Contiguous-USA 49 214 117.9 30,599.8 41,261,047 1.6e+64

American-Revolution 141 320 2.2 120.0 1,530,677 5.7e+95
Southern-women-1 50 178 — — — —
Club-membership 65 190 — — — —

Corporate-Leadership 64 198 — — — —

• Fast in solvable instances

• Very slow in unsolvable instances

23/35



Experiments on Grid/Random Network

• Construct the following networks
1. n× 5 grid network
2. random network with the same n,m

• Compute the exact influence spread from the corner

24/35



Results on Grid/Random Network (1/3)

0 20 40 60 80 100
10−20

10−15

10−10

10−5

100

Number of vertices n

In
flu
en
ce
pr
ob
ab
ili
ty

(a) Influence Probability

Grid
Random

25/35



Results on Grid/Random Network (2/3)

0 20 40 60 80 100

101

103

105

107

Number of vertices n

BD
D
Si
ze
(b) BDD Size

Grid
Random

26/35



Results on Grid/Random Network (3/3)

0 20 40 60 80 10010−4

10−3

10−2

10−1

100

101

102

Number of vertices n

Ti
m
e
(c) Time [s]

Grid
Random

27/35



Example 3: Greedy Algorithm

• We used the Contiguous USA Network
• We performed the greedy algorithm to seek the most
influencial seeds of size k = 10.

28/35



Results on Greedy Algorithm (1/3)

2 4 6 8 100

5

10

15

Number of steps

In
flu
en
ce
sp
re
ad

(a) Influence spread

ContUSA
Zachary

29/35



Results on Greedy Algorithm (2/3)

2 4 6 8 10105

106

107

108

Number of steps

Sh
ar
ed

Si
ze

(b) Shared Size

ContUSA
Zachary

30/35



Results on Greedy Algorithm (3/3)

2 4 6 8 1010−1

100

101

102

Number of steps

Ti
m
e
[s
]
(c) Time [s]

ContUSA
Zachary

31/35



Experiment 4: Exact vs Monte-Carlo

• We used the Contiguous USA Network
• Fix a set and compute influence spread by exact method
and Monte-Carlo method

• Compare the results for various number of MC samples

32/35



Results for Exact vs Monte-Carlo

0 0.2 0.4 0.6 0.8 1
·107

−2 · 100

−1 · 100

0 · 100

1 · 100

·10−3

Number of samples

Er
ro
ro
ft
he

es
tim

at
ed

in
flu
en
ce

• Fluctuates in 10−3, which is consistent with the theory

33/35



Related Work



Related Work

• This is the first attempt for exact influence spread
computation

• No existing method for enumerating s-t connected
subgraphs efficiently
(An algorithms for undirected case is known in the
literature of “Network Reliability” (e.g., [Valiant’79]),
but it cannot be extend to our directed case)

34/35



Conclusion



Conclusion / Future Work

Conclusion

1. We proposed the first algorithm to compute the influence
spread exactly

2. It constructs the BDDs of S-u connected subgraphs by new
frontier-based search and set family manipulations

3. Real networks with m ≈ 100 were solved

Future Work

1. We want to solve m ≈ 200 networks
2. Exact influence maximization
NP-hard problem with #P-hard function evaluation

This slide is available at:
http://www.prefield.com/slide/maehara2017exact_slide.pdf

35/35

http://www.prefield.com/slide/maehara2017exact_slide.pdf


Christian Borgs, Michael Brautbar, Jennifer Chayes, and
Brendan Lucier.
Maximizing social influence in nearly optimal time.
In SODA, pages 946–957, 2014.

Jacob Goldenberg, Barak Libai, and Eitan Muller.
Talk of the network: A complex systems look at the
underlying process of word-of-mouth.
Marketing Letters, 12(3):211–223, 2001.

Yuma Inoue and Shinichi Minato.
Acceleration of ZDD construction for subgraph
enumeration via path-width optimization.
TCS-TR-A-16-80. Hokkaido University, 2016.

David Kempe, Jon Kleinberg, and Éva Tardos.

35/35



Maximizing the spread of influence through a social
network.
In KDD, pages 137–146, 2003.

Shinichi Minato, Nagisa Ishiura, and Shuzo Yajima.
Shared binary decision diagram with attributed edges for
efficient boolean function manipulation.
In DAC, pages 52–57, 1990.

Matthew Richardson and Pedro Domingos.
Mining knowledge-sharing sites for viral marketing.
In KDD, pages 61–70, 2002.

Leslie G Valiant.
The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

35/35


	Introduction
	Proposed Algorithm (Outline)
	Frontier-Based Search — Main Procedure —
	Frontier-Based Search — Additional Techniques —
	Other Influence-Spread Related Problems
	Experiments
	Related Work
	Conclusion

