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p✓(y|x) p✓(y|T (x))

[Bachman et al., 2014; 
Miyato et al., 2016] 

KL[p✓(y|x)kp✓(y|T (x))]

y = (y1, y2, . . . , yD)
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• Local perturbation

• Random Perturbation Training (RPT) 
[Bachman et al., 2014] 

• Virtual Adversarial Training (VAT) 
[Miyato et al., 2016]  

T (x) = x+ r, krk2 = ✏

x

r
p✓(y|x)

p✓(y|x+ r)

Decision boundary
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Experiments (Clustering)
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• Measure clustering accuracy

1200

1200

#(input dimension)

#(Cluster size)

• Batch normalization
• ReLU activation
• Softmax output

x

p✓(y|x)

※ Implementation available online
https://github.com/weihua916/imsat



Learning Discrete Representations via Information Maximizing Self-Augmented Training

Table 2. Summary of dataset statistics.
Dataset #Points #Classes Dimension %Largest class
MNIST (LeCun et al., 1998) 70000 10 784 11%
Omniglot (Lake et al., 2011) 40000 100 441 1%
STL (Coates et al., 2010) 13000 10 2048 10%
CIFAR10 (Torralba et al., 2008) 60000 10 2048 10%
CIFAR100 (Torralba et al., 2008) 60000 100 2048 1%
SVHN (Netzer et al., 2011) 99289 10 960 19%
Reuters (Lewis et al., 2004) 10000 4 2000 43%
20news (Lang, 1995) 18040 20 2000 5%

Table 3. Comparison of clustering accuracy on eight benchmark datasets (%). Averages and standard deviations over twelve trials were
reported. Results marked with † were excerpted from Xie et al. (2016).

Method MNIST Omniglot STL CIFAR10 CIFAR100 SVHN Reuters 20news
K-means 53.2 12.0 85.6 34.4 21.5 17.9 54.1 15.5
dAE+K-means 79.8 † 14.1 72.2 44.2 20.8 17.4 67.2 22.1
DEC 84.3 † 5.7 (0.3) 78.1 (0.1) 46.9 (0.9) 14.3 (0.6) 11.9 (0.4) 67.3 (0.2) 30.8 (1.8)
Linear RIM 59.6 (2.3) 11.1 (0.2) 73.5 (6.5) 40.3 (2.1) 23.7 (0.8) 20.2 (1.4) 62.8 (7.8) 50.9 (3.1)
Linear IMSAT (VAT) 61.1 (1.9) 12.3 (0.2) 91.7 (0.5) 40.7 (0.6) 23.9 (0.4) 18.2 (1.9) 42.9 (0.8) 43.9 (3.3)
Deep RIM 58.5 (3.5) 5.8 (2.2) 92.5 (2.2) 40.3 (3.5) 13.4 (1.2) 26.8 (3.2) 62.3 (3.9) 25.1 (2.8)
IMSAT (RPT) 89.6 (5.4) 16.4 (3.1) 92.8 (2.5) 45.5 (2.9) 24.7 (0.5) 35.9 (4.3) 71.9 (6.5) 24.4 (4.7)
IMSAT (VAT) 98.4 (0.4) 24.0 (0.9) 94.1 (0.4) 45.6 (0.8) 27.5 (0.4) 57.3 (3.9) 71.0 (4.9) 31.1 (1.9)

A brief summary of dataset statistics is given in Table 2. In
the experiments, our goal was to discover clusters that cor-
respond well with the ground-truth categories. For the STL,
CIFAR10 and CIFAR100 datasets, raw pixels are not suited
for our goal because color information is dominant. We
therefore applied 50-layer pre-trained deep residual net-
works (He et al., 2016) to extract features and used them
for clustering. Note that since the residual network was
trained on ImageNet, each class of the STL dataset (which
is a subset of ImageNet) was expected to be well-separated
in the feature space. For Omniglot, 100 types of charac-
ters were sampled, each containing 20 data points. Each
data point was augmented 20 times by the stochastic affine
distortion described in Appendix F. For SVHN, each im-
age was represented as a 960-dimensional GIST feature
(Oliva & Torralba, 2001). For Reuters and 20news, we
removed stop words and retained the 2000 most frequent
words. We then used tf-idf features. Refer to Appendix E
for further details.

4.2.2. EVALUATION METRIC

Following Xie et al. (2016), we set the number of clus-
ters to the number of ground-truth categories and evaluated
clustering performance with unsupervised clustering accu-
racy (ACC):

ACC = max
m

∑N
n=1 1{ln = m(cn)}

N
, (16)

where ln and cn are the ground-truth label and cluster
assignment produced using the algorithm for xn, respec-
tively. The m ranges over all possible one-to-one mappings
between clusters and labels. The best mapping can be ef-
ficiently computed using the Hungarian algorithm (Kuhn,
1955).

4.2.3. HYPER-PARAMETER SELECTION

In unsupervised learning, it is not straightforward to de-
termine hyper-parameters by cross-validation. Hence, we
fixed hyper-parameters across all the datasets unless there
was an objective way to select them. For K-means,
we tried 12 different initializations and reported the re-
sults with the best objectives. For dAE+K-means and
DEC (Xie et al., 2016), we used the recommended hyper-
parameters for the network dimensionality and annealing
speed.

Inspired by the automatic kernel width selection in spec-
tral clustering (Zelnik-Manor & Perona, 2004), we set the
perturbation range, ϵ, on data point x in VAT and RPT as

ϵ(x) = α · σt(x), (17)

where α is a scalar and σt(x) is the Euclidian distance to
the t-th neighbor of x. In our experiments, we fixed t =
10. For Linear IMSAT (VAT), IMSAT (RPT) and IMSAT
(VAT), we fixed α = 0.4, 2.5 and 0.25, respectively, which
performed well across the datasets.

Experiments (Clustering)

33

[Xie et al., 
2014] 

• Tested on 8 benchmark datasets.
• Hyper-parameters are fixed throughout the datasets.
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SVHN (Netzer et al., 2011) 99289 10 960 19%
Reuters (Lewis et al., 2004) 10000 4 2000 43%
20news (Lang, 1995) 18040 20 2000 5%

Table 3. Comparison of clustering accuracy on eight benchmark datasets (%). Averages and standard deviations over twelve trials were
reported. Results marked with † were excerpted from Xie et al. (2016).

Method MNIST Omniglot STL CIFAR10 CIFAR100 SVHN Reuters 20news
K-means 53.2 12.0 85.6 34.4 21.5 17.9 54.1 15.5
dAE+K-means 79.8 † 14.1 72.2 44.2 20.8 17.4 67.2 22.1
DEC 84.3 † 5.7 (0.3) 78.1 (0.1) 46.9 (0.9) 14.3 (0.6) 11.9 (0.4) 67.3 (0.2) 30.8 (1.8)
Linear RIM 59.6 (2.3) 11.1 (0.2) 73.5 (6.5) 40.3 (2.1) 23.7 (0.8) 20.2 (1.4) 62.8 (7.8) 50.9 (3.1)
Linear IMSAT (VAT) 61.1 (1.9) 12.3 (0.2) 91.7 (0.5) 40.7 (0.6) 23.9 (0.4) 18.2 (1.9) 42.9 (0.8) 43.9 (3.3)
Deep RIM 58.5 (3.5) 5.8 (2.2) 92.5 (2.2) 40.3 (3.5) 13.4 (1.2) 26.8 (3.2) 62.3 (3.9) 25.1 (2.8)
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IMSAT (VAT) 98.4 (0.4) 24.0 (0.9) 94.1 (0.4) 45.6 (0.8) 27.5 (0.4) 57.3 (3.9) 71.0 (4.9) 31.1 (1.9)

A brief summary of dataset statistics is given in Table 2. In
the experiments, our goal was to discover clusters that cor-
respond well with the ground-truth categories. For the STL,
CIFAR10 and CIFAR100 datasets, raw pixels are not suited
for our goal because color information is dominant. We
therefore applied 50-layer pre-trained deep residual net-
works (He et al., 2016) to extract features and used them
for clustering. Note that since the residual network was
trained on ImageNet, each class of the STL dataset (which
is a subset of ImageNet) was expected to be well-separated
in the feature space. For Omniglot, 100 types of charac-
ters were sampled, each containing 20 data points. Each
data point was augmented 20 times by the stochastic affine
distortion described in Appendix F. For SVHN, each im-
age was represented as a 960-dimensional GIST feature
(Oliva & Torralba, 2001). For Reuters and 20news, we
removed stop words and retained the 2000 most frequent
words. We then used tf-idf features. Refer to Appendix E
for further details.

4.2.2. EVALUATION METRIC

Following Xie et al. (2016), we set the number of clus-
ters to the number of ground-truth categories and evaluated
clustering performance with unsupervised clustering accu-
racy (ACC):

ACC = max
m

∑N
n=1 1{ln = m(cn)}

N
, (16)

where ln and cn are the ground-truth label and cluster
assignment produced using the algorithm for xn, respec-
tively. The m ranges over all possible one-to-one mappings
between clusters and labels. The best mapping can be ef-
ficiently computed using the Hungarian algorithm (Kuhn,
1955).

4.2.3. HYPER-PARAMETER SELECTION

In unsupervised learning, it is not straightforward to de-
termine hyper-parameters by cross-validation. Hence, we
fixed hyper-parameters across all the datasets unless there
was an objective way to select them. For K-means,
we tried 12 different initializations and reported the re-
sults with the best objectives. For dAE+K-means and
DEC (Xie et al., 2016), we used the recommended hyper-
parameters for the network dimensionality and annealing
speed.

Inspired by the automatic kernel width selection in spec-
tral clustering (Zelnik-Manor & Perona, 2004), we set the
perturbation range, ϵ, on data point x in VAT and RPT as

ϵ(x) = α · σt(x), (17)

where α is a scalar and σt(x) is the Euclidian distance to
the t-th neighbor of x. In our experiments, we fixed t =
10. For Linear IMSAT (VAT), IMSAT (RPT) and IMSAT
(VAT), we fixed α = 0.4, 2.5 and 0.25, respectively, which
performed well across the datasets.

Experiments (Clustering)
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• Used perturbation as augmentation function.
• IMSAT (VAT) achieved state-of-the-art

performance.
x
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Do domain-specific augmentation functions improve the
clustering performance?

Experiments (Clustering)
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Omniglot dataset [Lake et al. 2011]
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Figure 3. Examples of the random affine distortion used in our experiments. Images in the top left side are stochastically transformed
using the affine distortion.

�Decay rateDecay rate

Figure 4. Relationship between hyper-parameters and clustering accuracy for 8 benchmark datasets with different methods: (a) Linear
RIM, (b) Deep RIM, and (c) IMSAT (VAT).

where β∗
dataset is the best hyper-parameter for the dataset, and ACC(β, dataset) is the clustering accuracy when hyper-

parameter β is used for the dataset. According to the criterion, we set the decay rates to 0.005 for both Linear RIM and
Deep RIM, and λ to 0.1 for IMSAT.

G. Experimental results on hash learning with 32-bit hash codes
Table 5 lists the results on hash learning when 32-bit hash codes were used. For the experiments involving 16-bit hash
codes, we observe that IMSAT with the largest network sizes (400-400) exhibited competitive performance in both datasets.
The performance of IMSAT improved significantly when we used slightly larger networks (200-200), while the perfor-
mance of Deep RIM did not improve much with the larger networks.

H. Comparisons of hash learning with different regularizations and network sizes using toy
dataset

We used a toy dataset to illustrate that IMSAT can benefit from larger networks sizes by better modeling the local invariance.
We also illustrate that weight-decay does not benefit much from the increased flexibility of neural networks.

For the experiments, we generated a spiral-shaped dataset, each arc containing 300 data points. For IMSAT, we used
VAT regularization and set ϵ = 0.3 for all the data points. We compared IMSAT with Deep RIM, which also uses neural
networks but with weight-decay regularization. We set the decay rate to 0.0005. We varied three settings for the network
dimensionality of the hidden layers: 5-5, 10-10, and 20-20.

Figure 5 shows the experimental results. We see that IMSAT (VAT) can model the complicated decision boundaries by
using the increased network dimensionality. On the contrary, the decision boundaries of Deep RIM do not adapt to the
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where β∗
dataset is the best hyper-parameter for the dataset, and ACC(β, dataset) is the clustering accuracy when hyper-

parameter β is used for the dataset. According to the criterion, we set the decay rates to 0.005 for both Linear RIM and
Deep RIM, and λ to 0.1 for IMSAT.

G. Experimental results on hash learning with 32-bit hash codes
Table 5 lists the results on hash learning when 32-bit hash codes were used. For the experiments involving 16-bit hash
codes, we observe that IMSAT with the largest network sizes (400-400) exhibited competitive performance in both datasets.
The performance of IMSAT improved significantly when we used slightly larger networks (200-200), while the perfor-
mance of Deep RIM did not improve much with the larger networks.

H. Comparisons of hash learning with different regularizations and network sizes using toy
dataset

We used a toy dataset to illustrate that IMSAT can benefit from larger networks sizes by better modeling the local invariance.
We also illustrate that weight-decay does not benefit much from the increased flexibility of neural networks.

For the experiments, we generated a spiral-shaped dataset, each arc containing 300 data points. For IMSAT, we used
VAT regularization and set ϵ = 0.3 for all the data points. We compared IMSAT with Deep RIM, which also uses neural
networks but with weight-decay regularization. We set the decay rate to 0.0005. We varied three settings for the network
dimensionality of the hidden layers: 5-5, 10-10, and 20-20.

Figure 5 shows the experimental results. We see that IMSAT (VAT) can model the complicated decision boundaries by
using the increased network dimensionality. On the contrary, the decision boundaries of Deep RIM do not adapt to the

• Domain-specific augmentation function
Small stochastic affine transformation
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Figure 3. Examples of the random affine distortion used in our experiments. Images in the top left side are stochastically transformed
using the affine distortion.
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Figure 4. Relationship between hyper-parameters and clustering accuracy for 8 benchmark datasets with different methods: (a) Linear
RIM, (b) Deep RIM, and (c) IMSAT (VAT).

where β∗
dataset is the best hyper-parameter for the dataset, and ACC(β, dataset) is the clustering accuracy when hyper-

parameter β is used for the dataset. According to the criterion, we set the decay rates to 0.005 for both Linear RIM and
Deep RIM, and λ to 0.1 for IMSAT.

G. Experimental results on hash learning with 32-bit hash codes
Table 5 lists the results on hash learning when 32-bit hash codes were used. For the experiments involving 16-bit hash
codes, we observe that IMSAT with the largest network sizes (400-400) exhibited competitive performance in both datasets.
The performance of IMSAT improved significantly when we used slightly larger networks (200-200), while the perfor-
mance of Deep RIM did not improve much with the larger networks.

H. Comparisons of hash learning with different regularizations and network sizes using toy
dataset

We used a toy dataset to illustrate that IMSAT can benefit from larger networks sizes by better modeling the local invariance.
We also illustrate that weight-decay does not benefit much from the increased flexibility of neural networks.

For the experiments, we generated a spiral-shaped dataset, each arc containing 300 data points. For IMSAT, we used
VAT regularization and set ϵ = 0.3 for all the data points. We compared IMSAT with Deep RIM, which also uses neural
networks but with weight-decay regularization. We set the decay rate to 0.0005. We varied three settings for the network
dimensionality of the hidden layers: 5-5, 10-10, and 20-20.

Figure 5 shows the experimental results. We see that IMSAT (VAT) can model the complicated decision boundaries by
using the increased network dimensionality. On the contrary, the decision boundaries of Deep RIM do not adapt to the

• Domain-specific augmentation function
Small stochastic affine transformation
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(a) IMSAT (VAT) (b) IMSAT (VAT & affine)
Figure 2. Randomly sampled clusters of Omniglot discovered using (a) IMSAT (VAT) and (b) IMSAT (VAT & affine). Each row contains
randomly sampled data points in same cluster.

Table 5. Comparison of hash performance for 16-bit hash codes (%). Averages and standard deviations over ten trials were reported.
Experimental results of Deep Hash and the previous methods were excerpted from Erin Liong et al. (2015).

Method Hamming ranking (mAP) precision @ sample = 500 precision @ r = 2
(Dimensions of hidden layers) MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10
Spectral hash (Weiss et al., 2009) 26.6 12.6 56.3 18.8 57.5 18.5
PCA-ITQ (Gong et al., 2013) 41.2 15.7 66.4 22.5 65.7 22.6
Deep Hash (60-30) 43.1 16.2 67.9 23.8 66.1 23.3
Linear RIM 35.9 (0.6) 24.0 (3.5) 68.9 (1.1) 15.9 (0.5) 71.3 (0.9) 14.2 (0.3)
Deep RIM (60-30) 42.7 (2.8) 15.2 (0.5) 67.9 (2.7) 21.8 (0.9) 65.9 (2.7) 21.2 (0.9)
Deep RIM (200-200) 43.7 (3.7) 15.6 (0.6) 68.7 (4.9) 21.6 (1.2) 67.0 (4.9) 21.1 (1.1)
Deep RIM (400-400) 43.9 (2.7) 15.4 (0.2) 69.0 (3.2) 21.5 (0.4) 66.7 (3.2) 20.9 (0.3)
IMSAT (VAT) (60-30) 61.2 (2.5) 19.8 (1.2) 78.6 (2.1) 21.0 (1.8) 76.5 (2.3) 19.3 (1.6)
IMSAT (VAT) (200-200) 80.7 (2.2) 21.2 (0.8) 95.8 (1.0) 27.3 (1.3) 94.6 (1.4) 26.1 (1.3)
IMSAT (VAT) (400-400) 83.9 (2.3) 21.4 (0.5) 97.0 (0.8) 27.3 (1.1) 96.2 (1.1) 26.4 (1.0)

constraint, we report the results for 32-bit hash codes in
Appendix H, but the results showed a similar tendency as
that of 16-bit hash codes. We see from Table 5 that IMSAT
with the largest network sizes (400-400) achieved competi-
tive performance in both datasets. The performance of IM-
SAT improved significantly when slightly bigger networks
(200-200) were used, while the performance of Deep RIM
did not improve much with the larger networks. We de-
duce that this is because we can better model the local
invariance by using more flexible networks. Deep RIM,
on the other hand, did not significantly benefit from the
larger networks, because the additional flexibility of the
networks was not used by the global function regulariza-
tion via weight-decay.1 In Appendix I, our deduction is
supported using a toy dataset.

1Hence, we deduce that Deep Hash, which is only regular-
ized by weight-decay, would not benefit much by using larger
networks.

5. Conclusion & Future Work
In this paper, we presented IMSAT, an information-
theoretic method for unsupervised discrete representation
learning using deep neural networks. Through extensive
experiments, we showed that intended discrete representa-
tions can be obtained by directly imposing the invariance to
data augmentation on the prediction of neural networks in
an end-to-end fashion. For future work, it is interesting to
apply our method to structured data, i.e., graph or sequen-
tial data, by considering appropriate data augmentation.
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(a) IMSAT (VAT) (b) IMSAT (VAT & affine)
Figure 2. Randomly sampled clusters of Omniglot discovered using (a) IMSAT (VAT) and (b) IMSAT (VAT & affine). Each row contains
randomly sampled data points in same cluster.

Table 5. Comparison of hash performance for 16-bit hash codes (%). Averages and standard deviations over ten trials were reported.
Experimental results of Deep Hash and the previous methods were excerpted from Erin Liong et al. (2015).

Method Hamming ranking (mAP) precision @ sample = 500 precision @ r = 2
(Dimensions of hidden layers) MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10
Spectral hash (Weiss et al., 2009) 26.6 12.6 56.3 18.8 57.5 18.5
PCA-ITQ (Gong et al., 2013) 41.2 15.7 66.4 22.5 65.7 22.6
Deep Hash (60-30) 43.1 16.2 67.9 23.8 66.1 23.3
Linear RIM 35.9 (0.6) 24.0 (3.5) 68.9 (1.1) 15.9 (0.5) 71.3 (0.9) 14.2 (0.3)
Deep RIM (60-30) 42.7 (2.8) 15.2 (0.5) 67.9 (2.7) 21.8 (0.9) 65.9 (2.7) 21.2 (0.9)
Deep RIM (200-200) 43.7 (3.7) 15.6 (0.6) 68.7 (4.9) 21.6 (1.2) 67.0 (4.9) 21.1 (1.1)
Deep RIM (400-400) 43.9 (2.7) 15.4 (0.2) 69.0 (3.2) 21.5 (0.4) 66.7 (3.2) 20.9 (0.3)
IMSAT (VAT) (60-30) 61.2 (2.5) 19.8 (1.2) 78.6 (2.1) 21.0 (1.8) 76.5 (2.3) 19.3 (1.6)
IMSAT (VAT) (200-200) 80.7 (2.2) 21.2 (0.8) 95.8 (1.0) 27.3 (1.3) 94.6 (1.4) 26.1 (1.3)
IMSAT (VAT) (400-400) 83.9 (2.3) 21.4 (0.5) 97.0 (0.8) 27.3 (1.1) 96.2 (1.1) 26.4 (1.0)

constraint, we report the results for 32-bit hash codes in
Appendix H, but the results showed a similar tendency as
that of 16-bit hash codes. We see from Table 5 that IMSAT
with the largest network sizes (400-400) achieved competi-
tive performance in both datasets. The performance of IM-
SAT improved significantly when slightly bigger networks
(200-200) were used, while the performance of Deep RIM
did not improve much with the larger networks. We de-
duce that this is because we can better model the local
invariance by using more flexible networks. Deep RIM,
on the other hand, did not significantly benefit from the
larger networks, because the additional flexibility of the
networks was not used by the global function regulariza-
tion via weight-decay.1 In Appendix I, our deduction is
supported using a toy dataset.

1Hence, we deduce that Deep Hash, which is only regular-
ized by weight-decay, would not benefit much by using larger
networks.

5. Conclusion & Future Work
In this paper, we presented IMSAT, an information-
theoretic method for unsupervised discrete representation
learning using deep neural networks. Through extensive
experiments, we showed that intended discrete representa-
tions can be obtained by directly imposing the invariance to
data augmentation on the prediction of neural networks in
an end-to-end fashion. For future work, it is interesting to
apply our method to structured data, i.e., graph or sequen-
tial data, by considering appropriate data augmentation.
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• 3 evaluation metrics: 
• mean average precision
• precision @ sample=500
• precision @ hamming dist=2

• 16-bit (D = 16)
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(a) IMSAT (VAT) (b) IMSAT (VAT & affine)
Figure 2. Randomly sampled clusters of Omniglot discovered using (a) IMSAT (VAT) and (b) IMSAT (VAT & affine). Each row contains
randomly sampled data points in same cluster.

Table 5. Comparison of hash performance for 16-bit hash codes (%). Averages and standard deviations over ten trials were reported.
Experimental results of Deep Hash and the previous methods were excerpted from Erin Liong et al. (2015).

Method Hamming ranking (mAP) precision @ sample = 500 precision @ r = 2
(Dimensions of hidden layers) MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10
Spectral hash (Weiss et al., 2009) 26.6 12.6 56.3 18.8 57.5 18.5
PCA-ITQ (Gong et al., 2013) 41.2 15.7 66.4 22.5 65.7 22.6
Deep Hash (60-30) 43.1 16.2 67.9 23.8 66.1 23.3
Linear RIM 35.9 (0.6) 24.0 (3.5) 68.9 (1.1) 15.9 (0.5) 71.3 (0.9) 14.2 (0.3)
Deep RIM (60-30) 42.7 (2.8) 15.2 (0.5) 67.9 (2.7) 21.8 (0.9) 65.9 (2.7) 21.2 (0.9)
Deep RIM (200-200) 43.7 (3.7) 15.6 (0.6) 68.7 (4.9) 21.6 (1.2) 67.0 (4.9) 21.1 (1.1)
Deep RIM (400-400) 43.9 (2.7) 15.4 (0.2) 69.0 (3.2) 21.5 (0.4) 66.7 (3.2) 20.9 (0.3)
IMSAT (VAT) (60-30) 61.2 (2.5) 19.8 (1.2) 78.6 (2.1) 21.0 (1.8) 76.5 (2.3) 19.3 (1.6)
IMSAT (VAT) (200-200) 80.7 (2.2) 21.2 (0.8) 95.8 (1.0) 27.3 (1.3) 94.6 (1.4) 26.1 (1.3)
IMSAT (VAT) (400-400) 83.9 (2.3) 21.4 (0.5) 97.0 (0.8) 27.3 (1.1) 96.2 (1.1) 26.4 (1.0)

constraint, we report the results for 32-bit hash codes in
Appendix H, but the results showed a similar tendency as
that of 16-bit hash codes. We see from Table 5 that IMSAT
with the largest network sizes (400-400) achieved competi-
tive performance in both datasets. The performance of IM-
SAT improved significantly when slightly bigger networks
(200-200) were used, while the performance of Deep RIM
did not improve much with the larger networks. We de-
duce that this is because we can better model the local
invariance by using more flexible networks. Deep RIM,
on the other hand, did not significantly benefit from the
larger networks, because the additional flexibility of the
networks was not used by the global function regulariza-
tion via weight-decay.1 In Appendix I, our deduction is
supported using a toy dataset.

1Hence, we deduce that Deep Hash, which is only regular-
ized by weight-decay, would not benefit much by using larger
networks.

5. Conclusion & Future Work
In this paper, we presented IMSAT, an information-
theoretic method for unsupervised discrete representation
learning using deep neural networks. Through extensive
experiments, we showed that intended discrete representa-
tions can be obtained by directly imposing the invariance to
data augmentation on the prediction of neural networks in
an end-to-end fashion. For future work, it is interesting to
apply our method to structured data, i.e., graph or sequen-
tial data, by considering appropriate data augmentation.
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• Tested on 2 benchmark datasets.
• Hyper-parameters are fixed throughout the datasets.
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(a) IMSAT (VAT) (b) IMSAT (VAT & affine)
Figure 2. Randomly sampled clusters of Omniglot discovered using (a) IMSAT (VAT) and (b) IMSAT (VAT & affine). Each row contains
randomly sampled data points in same cluster.

Table 5. Comparison of hash performance for 16-bit hash codes (%). Averages and standard deviations over ten trials were reported.
Experimental results of Deep Hash and the previous methods were excerpted from Erin Liong et al. (2015).

Method Hamming ranking (mAP) precision @ sample = 500 precision @ r = 2
(Dimensions of hidden layers) MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10
Spectral hash (Weiss et al., 2009) 26.6 12.6 56.3 18.8 57.5 18.5
PCA-ITQ (Gong et al., 2013) 41.2 15.7 66.4 22.5 65.7 22.6
Deep Hash (60-30) 43.1 16.2 67.9 23.8 66.1 23.3
Linear RIM 35.9 (0.6) 24.0 (3.5) 68.9 (1.1) 15.9 (0.5) 71.3 (0.9) 14.2 (0.3)
Deep RIM (60-30) 42.7 (2.8) 15.2 (0.5) 67.9 (2.7) 21.8 (0.9) 65.9 (2.7) 21.2 (0.9)
Deep RIM (200-200) 43.7 (3.7) 15.6 (0.6) 68.7 (4.9) 21.6 (1.2) 67.0 (4.9) 21.1 (1.1)
Deep RIM (400-400) 43.9 (2.7) 15.4 (0.2) 69.0 (3.2) 21.5 (0.4) 66.7 (3.2) 20.9 (0.3)
IMSAT (VAT) (60-30) 61.2 (2.5) 19.8 (1.2) 78.6 (2.1) 21.0 (1.8) 76.5 (2.3) 19.3 (1.6)
IMSAT (VAT) (200-200) 80.7 (2.2) 21.2 (0.8) 95.8 (1.0) 27.3 (1.3) 94.6 (1.4) 26.1 (1.3)
IMSAT (VAT) (400-400) 83.9 (2.3) 21.4 (0.5) 97.0 (0.8) 27.3 (1.1) 96.2 (1.1) 26.4 (1.0)

constraint, we report the results for 32-bit hash codes in
Appendix H, but the results showed a similar tendency as
that of 16-bit hash codes. We see from Table 5 that IMSAT
with the largest network sizes (400-400) achieved competi-
tive performance in both datasets. The performance of IM-
SAT improved significantly when slightly bigger networks
(200-200) were used, while the performance of Deep RIM
did not improve much with the larger networks. We de-
duce that this is because we can better model the local
invariance by using more flexible networks. Deep RIM,
on the other hand, did not significantly benefit from the
larger networks, because the additional flexibility of the
networks was not used by the global function regulariza-
tion via weight-decay.1 In Appendix I, our deduction is
supported using a toy dataset.

1Hence, we deduce that Deep Hash, which is only regular-
ized by weight-decay, would not benefit much by using larger
networks.

5. Conclusion & Future Work
In this paper, we presented IMSAT, an information-
theoretic method for unsupervised discrete representation
learning using deep neural networks. Through extensive
experiments, we showed that intended discrete representa-
tions can be obtained by directly imposing the invariance to
data augmentation on the prediction of neural networks in
an end-to-end fashion. For future work, it is interesting to
apply our method to structured data, i.e., graph or sequen-
tial data, by considering appropriate data augmentation.
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• IMSAT (VAT) outperformed the previous methods.
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