Learning Discrete Representations via Information Maximizing Self-Augmented Training

Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, Masashi Sugiyama

University of Tokyo

RIKEN

ATR

Preferred Networks

Preferred Networks University of Tokyo

University of Tokyo

Preferred Networks

RIKEN

University of Tokyo

*Based on the work performed at Preferred Networks

Longer version is to appear in ICML 2017

Unsupervised Discrete Representation Learning

Unlabeled data

Unsupervised Discrete Representation Learning

Unlabeled data

Learn to map

Discrete representations

00001110	01111101	00111111	00100111	11000000	11110000	00011011	100000011
00011100	10011000	00000001	00000111	11101110	11111000	00111100	111110100
11111101	00110110	01100011	00100011	00011100	00000111	00110000	111100100
00010101	11100111	11011000	01110010	00111110	01100011	11010110	000110010
11100110	11110111	00100111	11000000	11101110	00000011	10010000	111101111
10001110	10011011	10000001	00000110	10110011	11001100	11110001	110000000
11001101	00000000	10011110	00000000	11000001	11000010	10001100	011111110
01001110	11111011	10110011	00001111	10011011	10000111	11110001	000000110
01001100	10000100	00011001	10011001	11111111	00110011	11000000	110100100
00000111	111111111	00101001	00101011	10000011	01011111	11000011	010010100
00000010	10111111	11110000	11001110	11011111	11011000	111111111	110001100
11111110	00000101	11011110	10011111	11001001	01101101	10010001	100111111
00011011	01100100	11000100	11100011	00011111	00001000	00001100	000111100
00111100	11100011	00011001	00100100	10011011	10000011	10111001	110001011
01000011	00000111	11111010	00000111	11100001	11001000	10000011	000001101
10011100	11111001	11000000	10110100	11001000	10011000	11001111	001001100
11101111	11011111	01001110	00110011	01111001	00101101	10011100	011111000
01000111	01101110	00001100	00001111	11000011	11001101	01101111	011111100
10010011	10000111	10110111	00011100	00111111	00000011	01011010	110000011

Unsupervised Discrete Representation Learning

Unlabeled data

Learn to

map

Discrete representations

Clustering

Map to cluster assignments

0, 1, 5, 8, 9, 1, 3, 2, 4, 3, 9, 3, 2, 0, 2, 1, 4, 3, 1, 3

Unsupervised Discrete Representation Learning

Unlabeled data

Learn to map **Discrete representations**

Clustering

Map to cluster assignments

0, 1, 5, 8, 9, 1, 3, 2, 4, 3, 9, 3, 2, 0, 2, 1, 4, 3, 1, 3

Hash Learning Map to binary codes

0001, 0101, 1110, 1111, 0000, 0111, 0000, 1011

Deep Neural Networks (DNN) are Promising

Unlabeled data

Discrete representations

Clustering Map to cluster assignments 0, 1, 5, 8, 9, 1, 3, 2, 4, 3, 9, 3, 2, 0, 2, 1, 4, 3, 1, 3 Hash Learning Map to binary codes 0001, 0101, 1110, 1111, 0000, 0111, 0000, 1011

6

Deep Neural Networks (DNN) are Promising

Unlabeled data

Discrete representations

Clustering Map to cluster assignments 0, 1, 5, 8, 9, 1, 3, 2, 4, 3, 9, 3, 2, 0, 2, 1, 4, 3, 1, 3 Hash Learning Map to binary codes

0001, 0101, 1110, 1111, 0000, 0111, 0000, 1011

-4

0

2

4

 $Y \in \{0, \ldots, K-1\}$ $X \in \mathcal{X}$ 4 2 0 -2 "Strage to a start of the start -4 -2

-2

0

-4

2

Information Maximization clustering

[Bridle et al., 1991]

[Bridle et al., 1991]

[Gomes et al., 2010]

Information Maximizing Self-Augmented Training

State-of-the-art Performance

State-of-the-art in

- Clustering
- Hash learning

Outline

1. Introduction

- 2. Proposed Method: IMSAT = IM + SAT
 - Information Maximization (IM)
 - Self-Augmented Training (SAT)
- 3. Experiments
- 4. Conclusions & Future Work

Outline

- 1. Introduction
- 2. Proposed Method: IMSAT = IM + SAT
 - Information Maximization (IM)
 - Self-Augmented Training (SAT)
- 3. Experiments
- 4. Conclusions & Future Work

Information Maximization

Learn cluster assignment probability $p_{\theta}(y|x)$:

 $\max_{\theta} I(X;Y) \quad \text{[Bridle et al., 1991,} \qquad y \in \{0,\ldots,K-1\}$ Gomes et al., 2010]

Learn discrete representations probability $p_{\theta}(y_1, \ldots, y_D | x)$?

Information Maximization

Learn cluster assignment probability $p_{\theta}(y|x)$:

 $\max_{\theta} I(X;Y) \quad \text{[Bridle et al., 1991,} \qquad y \in \{0,\ldots,K-1\}$ Gomes et al.,

Learn discrete representations probability $p_{\theta}(y_1, \ldots, y_D | x)$:

 $\max_{\theta} I(X; Y_1, \ldots, Y_D)$

Information Maximization

Learn cluster assignment probability $p_{\theta}(y|x)$:

 $y \in \{0, \dots, K-1\}$ $\max_{\theta} I(X;Y) \quad \text{[Bridle et al., 1991,} \\ \text{Gomes et al..}$ Gomes et al.,

Learn discrete representations probability $p_{\theta}(y_1, \ldots, y_D | x)$:

$$\max_{\theta} I(X; Y_1, \ldots, Y_D)$$

• Challenge: Combinatorial summation $\sum \sum \cdots \sum$

 \rightarrow We need approximation!

Outline

- 1. Introduction
- 2. Proposed Method: IMSAT = IM + SATInformation Maximization (IM)
 - Self-Augmented Training (SAT)
- 3. Experiments
- 4. Conclusions & Future Work

More general InfoMax

Self-Augmented Training (SAT)

Augmentation function $T(\cdot) : \mathcal{X} \to \mathcal{X}$

Self-Augmented Training (SAT)

Related work:

DNN regularization that imposes invariance.

	Continuous	Discrete			
		One-dim	Multi-dim		
Supervised/ Semi-supervised		Bachman et al., 2014; Miyato et al., 2016; Sajjadi et al., 2016			
Unsupervised	Discriminative feature learning [Dosovitskiy et al. 2014]	Self-Augmente	d Training		

Self-Augmented Training (SAT)

Related work:

DNN regularization that imposes invariance.

	Continuous	Discrete			
		One-dim	Multi-dim		
Supervised/ Semi-supervised		Bachman et al., 2014; Miyato et al., 2016; Sajjadi et al., 2016			
Unsupervised	Discriminative feature learning [Dosovitskiy et al. 2014]	Self-Augmente	dea d Training		

Self-Augmented Training (SAT) boundary

Local perturbation

 $T(x) = x + r, \ \|r\|_2 = \epsilon$

- Random Perturbation Training (RPT) [Bachman et al., 2014]
- Virtual Adversarial Training (VAT) [Miyato et al., 2016]

Outline

1. Introduction

- 2. Proposed Method: IMSAT = IM + SAT
 - Information Maximization (IM)
 - Self-Augmented Training (SAT)

3. Experiments

4. Conclusions & Future Work

IMSAT = Information Maximizing + SAT

Outline

- 1. Introduction
- 2. Proposed Method: IMSAT
 - Information Maximization (IM)
 - Self-Augmented Training (SAT)
- 3. Experiments
- 4. Conclusions & Future Work

- Measure clustering accuracy
- Batch normalization
- ReLU activation
- Softmax output

Implementation available online https://github.com/weihua916/imsat

#(input dimension)

Method	MNIST	Omniglot	STL	CIFAR10	CIFAR100	SVHN	Reuters	20news
K-means	53.2	12.0	85.6	34.4	21.5	17.9	54.1	15.5
dAE+K-means	79.8 †	14.1	72.2	44.2	20.8	17.4	67.2	22.1
DEC [Xie et al.,	84.3 [†]	5.7 (0.3)	78.1 (0.1)	46.9 (0.9)	14.3 (0.6)	11.9 (0.4)	67.3 (0.2)	30.8 (1.8)
Linear 2614	59.6 (2.3)	11.1 (0.2)	73.5 (6.5)	40.3 (2.1)	23.7 (0.8)	20.2 (1.4)	62.8 (7.8)	50.9 (3.1)
Linear IMSAT (VAT)	61.1 (1.9)	12.3 (0.2)	91.7 (0.5)	40.7 (0.6)	23.9 (0.4)	18.2 (1.9)	42.9 (0.8)	43.9 (3.3)
Deep RIM	58.5 (3.5)	5.8 (2.2)	92.5 (2.2)	40.3 (3.5)	13.4 (1.2)	26.8 (3.2)	62.3 (3.9)	25.1 (2.8)
IMSAT (RPT)	89.6 (5.4)	16.4 (3.1)	92.8 (2.5)	45.5 (2.9)	24.7 (0.5)	35.9 (4.3)	71.9 (6.5)	24.4 (4.7)
IMSAT (VAT)	98.4 (0.4)	24.0 (0.9)	94.1 (0.4)	45.6 (0.8)	27.5 (0.4)	57.3 (3.9)	71.0 (4.9)	31.1 (1.9)

- Tested on 8 benchmark datasets.
- Hyper-parameters are fixed throughout the datasets.

Method	MNIST	Omniglot	STL	CIFAR10	CIFAR100	SVHN	Reuters	20news
K-means	53.2	12.0	85.6	34.4	21.5	17.9	54.1	15.5
dAE+K-means	79.8 †	14.1	72.2	44.2	20.8	17.4	67.2	22.1
DEC	84.3 †	5.7 (0.3)	78.1 (0.1)	46.9 (0.9)	14.3 (0.6)	11.9 (0.4)	67.3 (0.2)	30.8 (1.8)
Linear RIM	59.6 (2.3)	11.1 (0.2)	73.5 (6.5)	40.3 (2.1)	23.7 (0.8)	20.2 (1.4)	62.8 (7.8)	50.9 (3.1)
Linear IMSAT (VAT)	61.1 (1.9)	12.3 (0.2)	91.7 (0.5)	40.7 (0.6)	23.9 (0.4)	18.2 (1.9)	42.9 (0.8)	43.9 (3.3)
Deep RIM	58.5 (3.5)	5.8 (2.2)	92.5 (2.2)	40.3 (3.5)	13.4 (1.2)	26.8 (3.2)	62.3 (3.9)	25.1 (2.8)
IMSAT (RPT)	89.6 (5.4)	16.4 (3.1)	92.8 (2.5)	45.5 (2.9)	24.7 (0.5)	35.9 (4.3)	71.9 (6.5)	24.4 (4.7)
IMSAT (VAT)	98.4 (0.4)	24.0 (0.9)	94.1 (0.4)	45.6 (0.8)	27.5 (0.4)	57.3 (3.9)	71.0 (4.9)	31.1 (1.9)

- Used perturbation as augmentation function.
- IMSAT (VAT) achieved state-of-the-art performance.

Do **domain-specific** augmentation functions improve the clustering performance?

Domain-specific augmentation function
Small stochastic affine transformation

Domain-specific augmentation function
Small stochastic affine transformation

Experiments (Hash Learning)

- 3 evaluation metrics:
 - mean average precision
 - precision @ sample=500
 - precision @ hamming dist=2
- 16-bit (D = 16)

#(input dimension)

(a) IMSAT (VAT)

(b) IMSAT (VAT & affine)

LAPCINICIUS (HASH ECALINIS)

Method	Hamming r	anking (mAP)	precision @	2 sample = 500	precision @ $r = 2$	
(Dimensions of hidden layers)	MNIST	CIFAR10	MNIST	CIFAR10	MNIST	CIFAR10
Spectral hash (Weiss et al., 2009)	26.6	12.6	56.3	18.8	57.5	18.5
PCA-ITQ (Gong et al., 2013)	41.2	15.7	66.4	22.5	65.7	22.6
Deep Hash (60-30)	43.1	16.2	67.9	23.8	66.1	23.3
Linear RIM	35.9 (0.6)	24.0 (3.5)	68.9 (1.1)	15.9 (0.5)	71.3 (0.9)	14.2 (0.3)
Deep RIM (60-30)	42.7 (2.8)	15.2 (0.5)	67.9 (2.7)	21.8 (0.9)	65.9 (2.7)	21.2 (0.9)
Deep RIM (200-200)	43.7 (3.7)	15.6 (0.6)	68.7 (4.9)	21.6 (1.2)	67.0 (4.9)	21.1 (1.1)
Deep RIM (400-400)	43.9 (2.7)	15.4 (0.2)	69.0 (3.2)	21.5 (0.4)	66.7 (3.2)	20.9 (0.3)
IMSAT (VAT) (60-30)	61.2 (2.5)	19.8 (1.2)	78.6 (2.1)	21.0 (1.8)	76.5 (2.3)	19.3 (1.6)
IMSAT (VAT) (200-200)	80.7 (2.2)	21.2 (0.8)	95.8 (1.0)	27.3 (1.3)	94.6 (1.4)	26.1 (1.3)
IMSAT (VAT) (400-400)	83.9 (2.3)	21.4 (0.5)	97.0 (0.8)	27.3 (1.1)	96.2 (1.1)	26.4 (1.0)

- Tested on 2 benchmark datasets.
- Hyper-parameters are fixed throughout the datasets.

(a) IMSAT (VAT)

(b) IMSAT (VAT & affine)

LAPCINICIUS (HASH ECALINIS)

Method	Hamming r	anking (mAP)	precision @	2 sample = 500	sample = 500 precisior	
(Dimensions of hidden layers)	MNIST	CIFAR10	MNIST	CIFAR10	MNIST	CIFAR10
Spectral hash (Weiss et al., 2009)	26.6	12.6	56.3	18.8	57.5	18.5
PCA-ITQ (Gong et al., 2013)	41.2	15.7	66.4	22.5	65.7	22.6
Deep Hash (60-30)	43.1	16.2	67.9	23.8	66.1	23.3
Linear RIM	35.9 (0.6)	24.0 (3.5)	68.9 (1.1)	15.9 (0.5)	71.3 (0.9)	14.2 (0.3)
Deep RIM (60-30)	42.7 (2.8)	15.2 (0.5)	67.9 (2.7)	21.8 (0.9)	65.9 (2.7)	21.2 (0.9)
Deep RIM (200-200)	43.7 (3.7)	15.6 (0.6)	68.7 (4.9)	21.6 (1.2)	67.0 (4.9)	21.1 (1.1)
Deep RIM (400-400)	43.9 (2.7)	15.4 (0.2)	69.0 (3.2)	21.5 (0.4)	66.7 (3.2)	20.9 (0.3)
IMSAT (VAT) (60-30)	61.2 (2.5)	19.8 (1.2)	78.6 (2.1)	21.0 (1.8)	76.5 (2.3)	19.3 (1.6)
IMSAT (VAT) (200-200)	80.7 (2.2)	21.2 (0.8)	95.8 (1.0)	27.3 (1.3)	94.6 (1.4)	26.1 (1.3)
IMSAT (VAT) (400-400)	83.9 (2.3)	21.4 (0.5)	97.0 (0.8)	27.3 (1.1)	96.2 (1.1)	26.4 (1.0)

• IMSAT (VAT) outperformed the previous methods.

Outline

- 1. Introduction
- 2. Background (Regularized Information Maximization [Gomes et al., 2010])
- 3. Proposed Method (Information Maximizing Self-Augmented Training)
- 4. Experiments
- 5. Conclusions & Future Work

Future Work

Augmentation function $T(\cdot)$ encodes **invariance** of representations. \rightarrow What is effective $T(\cdot)$ for different types of data?

Ex.) image, text, sequence, graph

