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Tensor Decomposition

Tensor Data

Tensor data
Data as a multi-dimensional array.
X ∈ RI1×···×IK

K : mode, Ik : # elements

3D fMRI image

(X-axis× Y -axis× Z-axis)

Recommendation system

(item × time × user)
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Tensor Decomposition

Tensor Decomposition : Low Rank

Tensor data are high-dimensional.
E.g., 3D image : 1000 pixels for each axis ⇒ 109 pixels

Dimension Reduction is important

Tensors are low-rank ⇒ Tucker Decomposition (Tucker (1966))

X =

R1,...,RK∑
r1,...,rK=1

gr1,··· ,rKx
(k)
r1 ⊗ x

(k)
r2 ⊗ . . . x

(k)
rK

(RX
1 , . . . , R

X
K) : rank of X, gr1,...,rK : coefficients
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Idea of Smoothness

New Approach for Dimension Reduction

Smoothness appears in real data.

A pair of adjacent elements are similar.

Time Series data
(Smooth in Time)

Image data
(Smooth in Location)
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Idea of Smoothness

Idea of Smoothness

Generating Process for Smooth Tensor
Tensor data are generated by smooth functions.

Tensor (matrix)
with Smoothness

⇐
Generate

Generating Process
(Smooth Function)

Our Idea

Introduce the smooth generating function into the tensor data.
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Idea of Smoothness

Smoothness Formation of Tensors

Let X ∈ RI1×···×IK be K-mode tensor.
Function : fX : [0, 1]K → R, Grids : {(gj1 , . . . , gjK ) ∈ [0, 1]K}
X is represented by observed value of fX on the grids.

[X]j1...jK = fX(gj1 , . . . , gjK ).

K = 2 (matrix) case� �

fX(·, ·) {(gj1 , gj2) ∈ [0, 1]2} fX(gj1 , gj2)� �
Main Assumption

fX is smooth ( differentiable ).
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Idea of Smoothness

Functional Representation of Tensors

Representation Theorem

{φj(·) : [0, 1]→ R}∞j=1 : orthonormal basis (given)

fX(g1, . . . , gK) =
∑
m1

· · ·
∑
mK

wm1...mKφm1(g1) · · ·φmK (gK).

⇓ Discretize ([X]j1...jK = fX(gj1 , . . . , gjK ))

Smooth Tensor Formation

WX ∈ RM(1)×···×M(K)
: coefficient tensor (M (k) : # basis, M (k) ≤ Ik)

[X]j1...jK =

M(1)∑
m1=1

· · ·
M(K)∑
mK=1

[WX ]m1...mK︸ ︷︷ ︸
coefficient

φm1(gj1) · · ·φmK (gjK )︸ ︷︷ ︸
given

.

M.Imaizumi and K.Hayashi Tensor Decomposition with Smoothness (ICML2017) August 4, 2017 7 / 18



Idea of Smoothness

Image of the formation

(φ1, ..., φM ) is given.

fX is smooth ⇒ small M (k) can represent fX ⇒ WX is small

Dimension Reduction by Smoothness.
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Idea of Smoothness

Decomposition Method

A model for tensor completion (n elements are observed).

Y = X(X∗) + E .

X∗ ∈ RI1×···×IK : true tensor (unknown)
Y ∈ Rn : observed vector
X : RI1×···×IK → Rn : rearranging operator (known)
E ∈ Rn : noise vector (each element is i.i.d. Gaussian)

Method for Tucker decomposition with low-rank X∗ (Liu et al.(2009))

min
X

[
1

2n
‖Y − X(X)‖2 + λn|||X|||s

]
,

where |||·|||s is the Schatten-1 norm (rank regularization for X).
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Idea of Smoothness

Our Decomposition Method

Decomposition method for smooth X
Regularize the coefficient tensor WX .

Smooth Tucker Decomposition (STD)

min
WX

[
1

2n
‖Y − X(X)‖2F︸ ︷︷ ︸

Empirical Loss

+ λn|||WX |||s︸ ︷︷ ︸
Rank Penalty

+ µn|||WX |||2F︸ ︷︷ ︸
Volume Penalty

]
,

|||·|||F : the Frobenius norm, |||·|||s : Schatten-1 norm

Solved by the alternating direction method of multipliers (ADMM).
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Evaluation

Error Bound

Decomposition Accuracy
X∗ : true tensor, X̂ : estimated by STD
(RW

1 , . . . , RW
K ) : the Tucker rank of WX .

Theorem 1

Suppose the smoothness and some assumptions hold, then with high probability,

|||X̂ −X∗|||2F ≤ C

(
K−1

K∑
k=1

√
Ik +

√
I\k

)2

︸ ︷︷ ︸
From Noise

(
K−1

K∑
k=1

√
RW

k

)2

︸ ︷︷ ︸
:=A

.

By the original Tucker decomposition (Tomioka et al.(2011)),

A =

(
K−1

K∑
k=1

√
RX

k

)2

. (RX
k is rank of X, RW

k ≤ RX
k in general.)
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Evaluation

Experiments for Accuracy

Experiments : Recovery X∗ with noise
Compare the squared error with a smooth X∗ and a nonsmooth X∗.
The proposed method outperforms when X∗ is smooth

Proposed
Tucker 1
Tucker 2
Matrix
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Evaluation

Function Estimation

We can estimate fX , not only X∗

ŴX : the minimizer of the problem of STD.
Define the estimator for fX as

f̂ :=

M(1)∑
m1=1

· · ·
M(K)∑
mK=1

[ŴX ]m1...mK
φm1
· · ·φmK

Theorem 2

Suppose the conditions for Theorem 1 hold. Then, we have

sup
g∈[0,1]K

|f̂(g)− fX(g)| ≤ Same Bound
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Evaluation

Experiments (image interpolation)

Interpolate amino acid data (Kier et al.(1998)).

Shed light to amino acids and measure the volume of absorbed and
reflected light with each wavelength.

Observed Tucker STD(proposed)

Figure: Completion of missing elements of the acid data.
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Evaluation

Experiments (motion interpolation)

Interpolate video data (Schuldt et al.(2004)).

0.14 sec

0.18 sec
(50% missing)

Tucker STD(proposed)

(100% missing)
Tucker STD(proposed)

0.22 sec
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Summary

Summary

Topics
High-dimensional tensor data.

Idea
Using information of real data improves analysis.
Smoothness is a key factor for dimension reduction.

Result
Accurate and good analysis.
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Summary
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