Tensor Decomposition with Smoothness (ICML2017)

Masaaki Imaizumi ${ }^{1}$ Kohei Hayashi ${ }^{2,3}$

${ }^{1}$ Institute of Statistical Mathematics
${ }^{2}$ National Institute of Advanced Industrial Science and Technology
${ }^{3}$ RIKEN Center for Advanced Intelligence Project

August 4, 2017

Tensor Data

- Tensor data
- Data as a multi-dimensional array.
- $X \in \mathbb{R}^{I_{1} \times \cdots \times I_{K}}$
- $K:$ mode, $I_{k}: \#$ elements

3D fMRI image
(X-axis $\times Y$-axis $\times Z$-axis)

Recommendation system
(item \times time \times user)

Tensor Decomposition : Low Rank

- Tensor data are high-dimensional.
- E.g., 3D image : 1000 pixels for each axis $\Rightarrow 10^{9}$ pixels
- Dimension Reduction is important

Tensor Decomposition: Low Rank

- Tensor data are high-dimensional.
- E.g., 3D image : 1000 pixels for each axis $\Rightarrow 10^{9}$ pixels
- Dimension Reduction is important
- Tensors are low-rank \Rightarrow Tucker Decomposition (Tucker (1966))

$$
X=\sum_{r_{1}, \ldots, r_{K}=1}^{R_{1}, \ldots, R_{K}} g_{r_{1}, \cdots, r_{K}} x_{r_{1}}^{(k)} \otimes x_{r_{2}}^{(k)} \otimes \ldots x_{r_{K}}^{(k)}
$$

$\left(R_{1}^{X}, \ldots, R_{K}^{X}\right):$ rank of $X, g_{r_{1}, \ldots, r_{K}}$: coefficients

New Approach for Dimension Reduction

- Smoothness appears in real data.
- A pair of adjacent elements are similar.

Time Series data
(Smooth in Time)

Image data (Smooth in Location)

Idea of Smoothness

- Generating Process for Smooth Tensor
- Tensor data are generated by smooth functions.

Tensor (matrix)
with Smoothness

Idea of Smoothness

- Generating Process for Smooth Tensor
- Tensor data are generated by smooth functions.

Tensor (matrix) with Smoothness

Generating Process (Smooth Function)

Idea of Smoothness

- Generating Process for Smooth Tensor
- Tensor data are generated by smooth functions.

Tensor (matrix) with Smoothness

Generating Process (Smooth Function)

Our Idea

Introduce the smooth generating function into the tensor data.

Smoothness Formation of Tensors

- Let $X \in \mathbb{R}^{I_{1} \times \cdots \times I_{K}}$ be K-mode tensor.
- Function : $f_{X}:[0,1]^{K} \rightarrow \mathbb{R}$, Grids : $\left\{\left(g_{j_{1}}, \ldots, g_{j_{K}}\right) \in[0,1]^{K}\right\}$
- X is represented by observed value of f_{X} on the grids.

$$
[X]_{j_{1} \ldots j_{K}}=f_{X}\left(g_{j_{1}}, \ldots, g_{j_{K}}\right)
$$

$$
f_{X}(\cdot, \cdot)
$$

$\left\{\left(g_{j_{1}}, g_{j_{2}}\right) \in[0,1]^{2}\right\}$
$f_{X}\left(g_{j_{1}}, g_{j_{2}}\right)$

Main Assumption
f_{X} is smooth (differentiable).
M.Imaizumi and K.Hayashi

Tensor Decomposition with Smoothness (ICN
August 4, 2017

Functional Representation of Tensors

Representation Theorem
$\left\{\phi_{j}(\cdot):[0,1] \rightarrow \mathbb{R}\right\}_{j=1}^{\infty}$: orthonormal basis (given)

$$
f_{X}\left(g_{1}, \ldots, g_{K}\right)=\sum_{m_{1}} \cdots \sum_{m_{K}} w_{m_{1} \ldots m_{K}} \phi_{m_{1}}\left(g_{1}\right) \cdots \phi_{m_{K}}\left(g_{K}\right) .
$$

$$
\Downarrow \text { Discretize }\left([X]_{j_{1} \ldots j_{K}}=f_{X}\left(g_{j_{1}}, \ldots, g_{j_{K}}\right)\right)
$$

Smooth Tensor Formation

$W_{X} \in \mathbb{R}^{M^{(1)} \times \cdots \times M^{(K)}}:$ coefficient tensor $\left(M^{(k)}: \#\right.$ basis, $\left.M^{(k)} \leq I_{k}\right)$

$$
[X]_{j_{1} \ldots j_{K}}=\sum_{m_{1}=1}^{M^{(1)}} \cdots \sum_{m_{K}=1}^{M^{(K)}} \underbrace{\left[W_{X}\right]_{m_{1} \ldots m_{K}}}_{\text {coefficient }} \underbrace{\phi_{m_{1}}\left(g_{j_{1}}\right) \cdots \phi_{m_{K}}\left(g_{j_{K}}\right)}_{\text {given }} .
$$

Image of the formation

- $\left(\phi_{1}, \ldots, \phi_{M}\right)$ is given.
- f_{X} is smooth \Rightarrow small $M^{(k)}$ can represent $f_{X} \Rightarrow W_{X}$ is small Dimension Reduction by Smoothness.

Decomposition Method

- A model for tensor completion (n elements are observed).

$$
Y=\mathfrak{X}\left(X^{*}\right)+\mathcal{E} .
$$

- $X^{*} \in \mathbb{R}^{I_{1} \times \cdots \times I_{K}}$: true tensor (unknown)
- $Y \in \mathbb{R}^{n}$: observed vector
- $\mathfrak{X}: \mathbb{R}^{I_{1} \times \cdots \times I_{K}} \rightarrow \mathbb{R}^{n}$: rearranging operator (known)
- $\mathcal{E} \in \mathbb{R}^{n}$: noise vector (each element is i.i.d. Gaussian)
- Method for Tucker decomposition with low-rank X^{*} (Liu et al.(2009))

$$
\min _{X}\left[\frac{1}{2 n}\|Y-\mathfrak{X}(X)\|^{2}+\lambda_{n}\|X\|_{s}\right]
$$

where $\left\|\|\cdot\|_{s}\right.$ is the Schatten-1 norm (rank regularization for X).

Our Decomposition Method

- Decomposition method for smooth X
- Regularize the coefficient tensor W_{X}.
- Smooth Tucker Decomposition (STD)

$$
\min _{W_{X}}[\underbrace{\frac{1}{2 n}\|Y-\mathfrak{X}(X)\|_{F}^{2}}_{\text {Empirical Loss }}+\underbrace{\lambda_{n}\left\|W_{X}\right\|_{s}}_{\text {Rank Penalty }}+\underbrace{\mu_{n}\| \| W_{X} \|_{F}^{2}}_{\text {Volume Penalty }}]
$$

$\left|\left||\cdot| \|_{F}\right.\right.$: the Frobenius norm, $\left.|\right||\cdot| \|_{s}$: Schatten-1 norm

- Solved by the alternating direction method of multipliers (ADMM).

Error Bound

- Decomposition Accuracy
- X^{*} : true tensor, \widehat{X} : estimated by STD
- $\left(R_{1}^{W}, \ldots, R_{K}^{W}\right)$: the Tucker rank of W_{X}.

Theorem 1

Suppose the smoothness and some assumptions hold, then with high probability,

$$
\left\|\widehat{X}-X^{*}\right\|_{F}^{2} \leq C \underbrace{\left(K^{-1} \sum_{k=1}^{K} \sqrt{I_{k}}+\sqrt{I_{\backslash k}}\right)^{2}}_{\text {From Noise }} \underbrace{\left(K^{-1} \sum_{k=1}^{K} \sqrt{R_{k}^{W}}\right)^{2}}_{:=\mathbb{A}} .
$$

- By the original Tucker decomposition (Tomioka et al.(2011)),

$$
\mathbb{A}=\left(K^{-1} \sum_{k=1}^{K} \sqrt{R_{k}^{X}}\right)^{2} . \quad\left(R_{k}^{X} \text { is rank of } X, R_{k}^{W} \leq R_{k}^{X} \text { in general. }\right)
$$

Experiments for Accuracy

- Experiments : Recovery X^{*} with noise
- Compare the squared error with a smooth X^{*} and a nonsmooth X^{*}.
- The proposed method outperforms when X^{*} is smooth

Proposed Tucker 1
Tucker 2
Matrix

Function Estimation

- We can estimate f_{X}, not only X^{*}
- \widehat{W}_{X} : the minimizer of the problem of STD.
- Define the estimator for f_{X} as

$$
\widehat{f}:=\sum_{m_{1}=1}^{M^{(1)}} \cdots \sum_{m_{K}=1}^{M^{(K)}}\left[\widehat{W}_{X}\right]_{m_{1} \ldots m_{K}} \phi_{m_{1}} \cdots \phi_{m_{K}}
$$

Theorem 2
Suppose the conditions for Theorem 1 hold. Then, we have

$$
\sup _{g \in[0,1]^{K}}\left|\widehat{f}(g)-f_{X}(g)\right| \leq \text { Same Bound }
$$

Experiments (image interpolation)

- Interpolate amino acid data (Kier et al.(1998)).
- Shed light to amino acids and measure the volume of absorbed and reflected light with each wavelength.

STD(proposed)

Figure: Completion of missing elements of the acid data.

Experiments (motion interpolation)

- Interpolate video data (Schuldt et al.(2004)).

Summary

- Topics
- High-dimensional tensor data.
- Idea
- Using information of real data improves analysis.
- Smoothness is a key factor for dimension reduction.
- Result
- Accurate and good analysis.

Reference

- Liu, Ji, Musialski, Przemyslaw, Wonka, Peter, and Ye, Jieping. Tensor completion for estimating missing values in visual data. In ICCV, 2009.
- Tomioka, Ryota, Suzuki, Taiji, Hayashi, Kohei, and Kashima, Hisashi. Statistical performance of convex tensor decomposition. In NIPS, 2011.
- Tucker, Ledyard R. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279-311, 1966.
- Kiers, Henk AL. A three-step algorithm for candecomp/parafac analysis of large data sets with multi- collinearity. Journal of Chemometrics, 12(3):155-171, 1998.
- Schuldt, Christian, Laptev, Ivan, and Caputo, Barbara. Recognizing human actions: A local svm approach. In Pat- tern Recognition, 2004. In ICPR 2004.

Images

- Irasuto-ya http://www.irasutoya.com
- Slicer Web http://slicer.org
- http://mymilitarybases.com/military-finance/

