

Differentially Private Chi-squared Test by Unit Circle Mechanism

Kazuya Kakizaki^{*1} Kazuto Fukuchi ^{*1} Jun Sakuma ^{*1,2,3}

*1U. Tsukuba, *2JST CREST, *3RIKEN AIP

(to appear in ICML 2017)

https://bigdata.nii.ac.jp/eratokansyasai4/

Estimating samples from statistics

- Release of statistics is believed not to reveal information on each sample
- Samples might be inferred if the statistic dimension is high

GWAS case

- Finding disease related SNPs with chi-squared test
 - #samples: ~10⁴
 - #dimension: $\sim 10^6$
- Privacy invasion caused by release of test statistics
 - Patient's disease status could be inferred from aggregate statistics collected for GWAS [Homer+ 2008]
 - NIH decided to stop releasing GWAS-related statistics publicly
- How can we release statistics securely?

Releasing statistics securely

- Plausible deniability and randomized response
 - Question "Have you ever tried marijuana in the past?"
 - Flip a coin. If tail, answer honestly. Else, flip again and answer honestly if tail. Else, answer randomly.

Differential Privacy (DP) [Dwork+ 2006]

Definition 1 (ϵ -DP (Dwork et al., 2006)). *Mechanism* \mathcal{M} : $S \rightarrow \mathcal{Y}$ provides ϵ -DP if, for any $S \sim S'$ and $Y \subseteq \mathcal{Y}$,

 $\Pr[\mathcal{M}(S) \in Y] \le \exp(\epsilon) \Pr[\mathcal{M}(x') \in Y].$

http://www.irasutoya.com/

χ^2 test for independence

	Smoker	Non-smoker
Lung cancer	а	b
No lung cancer	С	d

- Chi-squared statistic
 - Is smoking related to lung cancer?
 - If $\chi^2(S) > \tau_{\alpha}$, associated

Related works

- To achieve DP, the test statistic needs to be randomized in some sense
- 1. Output perturbation [Fienberg+ 2011, Yu+ 2014, Wang+ 2015]
 - Randomize test statistics
 - Type-I error is controllable
 - High type-I error w.r.t. sample size N
 - Type-II error/FWER is not controllable
- 2. Input perturbation [Johnson+ 2013]
 - Randomize counts
 - Type-I error is controllable
 - Type-II error/FWER is not controllable

Contributions

- 1. Investigate the type-II error of DP mechanisms analytically
- 2. A novel DP mechanism with $O(\exp(-\sqrt{N}))$ type-II error
- 3. A novel DP mechanism that can control the family-wise error rate (FWER)

Contributions

- 1. Investigate the type-II error of DP mechanisms analytically
- **2.** A novel DP mechanism with $O(\exp(-\sqrt{N}))$ type-II error
- 3. A novel DP mechanism that can control the family-wise error rate (FWER)

Type-II error of DP chi-squared test

Theorem (Upper bound of type-II error of DP chi-squared test)

For any $\gamma > 0$, the upper bound of the type-II error of DP chi-squared test mechanism is

$$\Pr[M(S, \hat{\tau}_{\alpha}) = \operatorname{acc}|H_{1} \text{ is true}] \\ \leq \sup_{P \in \mathcal{P}} \left\{ \Pr[M(S, \hat{\tau}_{\alpha}) = \operatorname{acc}|\chi^{2}(S) > \hat{\tau}_{\alpha} + \gamma] + \frac{\beta_{\hat{\tau}_{\alpha} + \gamma}}{2} \right\}$$

$$(1)$$

 $eta_{ au_lpha}$:type-II error when one use threshold au_lpha

 $\mathcal{P} = \{P : H_1 \text{ is true}\} :$ set of distributions of sample sets

- $\hat{\tau}_{\alpha}$: Threshold for mechanism $\,M\,$ that is determined so that the type-I error of $\,M\,$ becomes α
- ① measures how often the mechanism wrongly accepts H_0 (γ error)
- ② is the type-II error of non-private test with threshold $\hat{\tau}_{\alpha} + \gamma$

A mechanism M with lower 1 and 2 achieves greater power

Power analysis

- Output perturbation
 - The γ error is upper-bounded by $\frac{1}{2} \exp\left(\frac{-\gamma \epsilon}{\Delta}\right)$
 - Not decreases w.r.t. N
- Input perturbation
 - The $~\gamma~$ error cannot be appropriately derived
- Can we design a randomization mechanism in which the gamma error is decreasing w.r.t. N?

Contributions

- 1. Investigate the type-II error of DP mechanisms analytically
- 2. A novel DP mechanism with $O(\exp(-\sqrt{N}))$ type-II error
- 3. A novel DP mechanism that can control the family-wise error rate (FWER)

Table 1. Contingency table T of two binary variables $X_1 = 1$ $X_1 = 0$ $X_0 = 1$ c_{11} c_{10} M_1 $X_0 = 0$ c_{01} c_{00} M_0 N_1 N_0 N

The test statistic is a function of c_{11} and c_{10}

Geometrical interpretation of statisitcs

• Chi-square test statistic $\chi^2(c_{11},c_{10})= au_{lpha}.$

 $\iff Ac_{11}^2 + Bc_{10}^2 + 2Cc_{11}c_{10} + D(c_{11} + c_{10}) = 0,$ (forms an ellipsoid)

Unit circle mechanism

<u>c</u>10

Test result $-\begin{cases} H_0 \text{ is accepted } \text{ if } \|V((c_{11}, c_{10})^t)\|_2 + \text{noise} \leq 1 \\ H_1 \text{ is accepted } \text{ otherwise} \end{cases}$

Analysis of upper bound of type-II error

- The type-II error of UCM is expected to decrease faster rate than OP
- The type-II error of IP cannot be analyzed

Why UCM has less gamma error?

- The cell of table (c_{11}, c_{10}) changes ± 1 when $S \rightarrow S'$ – Then, the coordinate of cell move on (c_{11}, c_{10}) -plane
- If we fix $\gamma = |\tau_{\alpha} \chi^2(c_{11}, c_{10})|$, the interval between ellipse of τ_{α} and coordinate becomes wider, as N increases
- -The randomized test statistics by UCM becomes $e^{S'}$ sensitive to noise as N increases

Contributions

- 1. Investigate the type-II error of DP mechanisms analytically
- 2. A novel DP mechanism with $O(\exp(-\sqrt{N}))$ type-II error
- 3. A novel DP mechanism that can control the family-wise error rate (FWER)

skipped

Experiment for single test

- We evaluate the significance and the power
 - Input perturbation
 - Output perturbation
 - Unit circle mechanism
- Type-I error is controlled by using MC sampling respectively
- Data
 - We sample 1000 contingency table from multinomial distribution
- Parameter
 - Significance level $~~\alpha=0.05$
 - Privacy parameter $\epsilon=0.1$

Significance result

- Data: sample from *mult*(0.25, 0.25, 0.25, 0.25)
- Measure: significance = (1 type-I error)

All mechanisms can properly control the significance at 0.95 for any sample size

Power result

- Data: sample from *mult*(0.26, 0.24, 0.24, 0.26)
- Evaluation: Power (1 type-II error)

- ① UCM has a faster rate than OP
 - Because gamma error of UCM decreases as the sample size increases
- ② UCM has similar power to that of the IP
 - However type-II error of UCM is analyzed unlike IP

Conclusions and future work

We provide procedures for differential private chi-squared test and multiple version

- Contributions
 - 1. Investigate the upper bound of type-II error of OP and UCM
 - 2. A novel differentially private mechanism (unit circle mechanism)
 - Improve the dominated term of the type-II error from O(1) to $O(\exp(-\sqrt{N}))$
 - 3. Framework of differential private multiple chi-squared test
 - Control the family-wise error rate (FWER) properly
- Future work
 - Investigate the upper bound of type-II error of IP