
Scaling Locally Linear Embedding

Yasuhiro Fujiwara†‡*, Naoki Marumo†, Mathieu Blondel†, Koh Takeuchi†,
Hideaki Kim†, Tomoharu Iwata†, Naonori Ueda†

†NTT Communication Science Laboratories,
‡NTT Software Innovation Center,

‡*Osaka University

Introduction
• Locally Linear Embedding (LLE) is one of the

popular approaches of nonlinear dimensionality
reduction

• However, it requires high computational cost

• The goal in this study is to enhance the pro-
cessing speed of LLE

• We propose a novel approach, Ripple, as a
solution

2

LLE: overview
• LLE is an approach that can effectively reduce

the dimensionality of multi-dimensional data*1

– Effectively represents manifold (clustering structure)
of a dataset by embedding

• 3 steps:
1. k-NN graph
2. Edge weight by regression
3. Eigen decomposition based on adjacency matrix

• Eigen vectors correspond to embedding

*1 Roweis et al., “Nonlinear Dimensionality Reduction by Locally Linear Embedding”, Science, 2000
3

LLE: step1 k-NN graph
• Use naive approach

– Pick up data points (nodes) one by one
– Compute top 𝐾𝐾 based on Euclidean distance
– Computation cost: 𝑂𝑂 𝑁𝑁2𝑀𝑀

• 𝑁𝑁: # data points, 𝑀𝑀: # dimensions

4

LLE: step2 edge weight
• Compute edge weights by regression (sum of

edge weights is normalized to 1)
• Lagrange multiplier method

– Regression error of node 𝑥𝑥𝑝𝑝

– Edge weights are obtained from inverse of matrix 𝐺𝐺

– Computation cost: 𝑂𝑂 𝑁𝑁(𝑀𝑀𝐾𝐾2 + 𝐾𝐾3)
• 𝑂𝑂(𝑀𝑀𝐾𝐾2) for computing matrix G
• 𝑂𝑂(𝐾𝐾3) for computing matrix 𝐺𝐺−1

𝜀𝜀 = 𝑥𝑥𝑝𝑝 −�
𝑥𝑥𝑖𝑖∈ℕ[𝑥𝑥𝑝𝑝]

w[𝑝𝑝, 𝑖𝑖]𝑥𝑥𝑖𝑖
2

= �
𝑥𝑥i,𝑥𝑥j∈ℕ[𝑥𝑥𝑝𝑝]

𝐺𝐺[i, j]
ℕ[𝑥𝑥𝑝𝑝]: top K data points of 𝑥𝑥𝑝𝑝
G[i, j]: (𝑥𝑥𝑝𝑝-𝑥𝑥i)(𝑥𝑥𝑝𝑝-𝑥𝑥𝑗𝑗)

w p, i = ��
𝑗𝑗=1

𝐾𝐾
𝐺𝐺−1[𝑖𝑖, 𝑗𝑗] �

𝑖𝑖=1

𝐾𝐾
�

𝑗𝑗=1

𝐾𝐾
𝐺𝐺−1[𝑖𝑖, 𝑗𝑗] w[p, i]: edge weight from 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑝𝑝

5

regression

LLE: step 3 Eigen decomposition
• Minimize error of dimensionality reduction

– Compute Eigen decomposition of matrix K obtained
from adjacency matrix 𝑊𝑊 of step 2

– “Bottom (the smallest) ” Eigen vectors of matrix K are
the embedding to low dimensionalities

• Not top (the highest) Eigen vectors
– Computation cost: 𝑂𝑂 𝑁𝑁3

• Size of matrix K is 𝑁𝑁 × 𝑁𝑁

K = 𝐼𝐼 −𝑊𝑊 𝑇𝑇(𝐼𝐼 −𝑊𝑊)

6

LLE: problem
• Impractical for large size of dataset

– It needs high computation cost
– Computation cost: 𝑂𝑂 𝑁𝑁2𝑀𝑀 + 𝑁𝑁 𝑀𝑀𝐾𝐾2 + 𝐾𝐾3 + 𝑁𝑁3

• Especially Eigen decomposition needs high computation cost
since it requires 𝑂𝑂 𝑁𝑁3 time

7

Proposed method
• We exploit 3 approaches

– Incremental weight computation
• Efficiently compute weights by using inner product of data

points and the Woodbury formula
– Improve lower bound of Euclidean distance

• Enhance effectiveness of pruning by exploiting graph
structure

• Efficiently obtain top-k nodes
– LU decomposition based Eigen decomposition

• Compute eigenvectors “ascending” order of Eigen values
– Power method compute eigenvectors in “descending” order

• We avoid computing inverse matrix by LU decomposition
• Significantly reduce computation cost of Eigen decomposition

8

Incremental weight computation
• Basic idea

– Compute k-NN graph by picking up nodes one by one
– Since such nodes share nearest neighbors, we uses

the Wood bury formula to compute inverse matrix
– But, each node has totally different matrix 𝐺𝐺𝑝𝑝

– We use matrix 𝐶𝐶𝑝𝑝 instead of 𝐺𝐺𝑝𝑝 that can share
element in applying Lagrange multiplier method

Processing node for
weight computation

Already processed node
for weight computation

𝐺𝐺𝑝𝑝[i, j]: (𝑥𝑥𝑝𝑝-𝑥𝑥i)(𝑥𝑥𝑝𝑝-𝑥𝑥𝑗𝑗)

Share nearest
neighbors

9

Incremental weight computation
• Let y = ∑𝑥𝑥𝑖𝑖∈ℕ[𝑥𝑥𝑝𝑝]𝑊𝑊[𝑝𝑝, 𝑖𝑖]𝑥𝑥𝑖𝑖, regression error 𝜀𝜀

• Let 𝐿𝐿 = 𝜀𝜀 + 𝛾𝛾𝑊𝑊 be function of Lagrange multiplier method

• If 𝐶𝐶𝑝𝑝[𝑖𝑖, 𝑗𝑗] = 𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗
𝑇𝑇 and 𝑝𝑝[𝑖𝑖] = 𝑥𝑥𝑝𝑝 𝑥𝑥𝑖𝑖 𝑇𝑇, we have 𝐶𝐶𝑝𝑝𝑊𝑊 = 𝑝𝑝

from Lagrange multiplier method, thus 𝑊𝑊 = 𝑝𝑝(𝐶𝐶𝑝𝑝)−1

• (𝐶𝐶𝑝𝑝)−1 is independent from 𝑥𝑥𝑝𝑝, so incrementally updated

𝜀𝜀 = 𝑥𝑥𝑝𝑝 −�
𝑥𝑥𝑖𝑖∈ℕ[𝑥𝑥𝑝𝑝]

𝑊𝑊[𝑝𝑝, 𝑖𝑖]𝑥𝑥𝑖𝑖
2

= 𝑥𝑥𝑝𝑝(𝑥𝑥𝑝𝑝)𝑇𝑇−2𝑥𝑥𝑦𝑦𝑇𝑇 + 𝑦𝑦(𝑦𝑦)𝑇𝑇

∂𝐿𝐿
∂𝑊𝑊[𝑝𝑝, 𝑖𝑖]

= −2𝑥𝑥𝑝𝑝 𝑥𝑥𝑖𝑖 𝑇𝑇 + 2�
𝑥𝑥j∈ℕ 𝑥𝑥𝑝𝑝

𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗
𝑇𝑇𝑊𝑊 𝑝𝑝, 𝑖𝑖 + 𝛾𝛾 ∂𝐿𝐿

∂𝛾𝛾 = ∑𝑥𝑥i∈ℕ 𝑥𝑥𝑝𝑝
𝑊𝑊 𝑝𝑝, 𝑖𝑖 -1

10

Incremental weight computation
• Here we assume that the first nearest neighbor node is

different from node 𝑥𝑥𝑝𝑝 and 𝑥𝑥𝑞𝑞
– We also assume that norms of 𝑥𝑥𝑝𝑝 and 𝑥𝑥𝑞𝑞 are 1

• If ∆C = 𝐶𝐶𝑝𝑝 − 𝐶𝐶q, ∆C = 𝑉𝑉𝑇𝑇𝐷𝐷𝑉𝑉 where 𝑉𝑉 and 𝐷𝐷 are rank-2
– Since ∆C has particular form, it need 𝑂𝑂 𝐾𝐾 to compute 𝑉𝑉𝑇𝑇𝐷𝐷𝑉𝑉

• We can compute (𝐶𝐶𝑝𝑝)−1 at 𝑂𝑂 𝐾𝐾2 by the Woodbury formula
– We apply each different nearest neighbor node to compute (𝐶𝐶𝑝𝑝)−1

11

𝐶𝐶𝑞𝑞 =
1 𝑥𝑥1 𝑥𝑥2 𝑇𝑇 𝑥𝑥1 𝑥𝑥3 𝑇𝑇

𝑥𝑥1 𝑥𝑥2 𝑇𝑇 1 𝑥𝑥2 𝑥𝑥3 𝑇𝑇

𝑥𝑥1 𝑥𝑥3 𝑇𝑇 𝑥𝑥2 𝑥𝑥3 𝑇𝑇 1
𝐶𝐶𝑝𝑝 =

1 𝑥𝑥1 𝑥𝑥2 𝑇𝑇 𝑥𝑥1 𝑥𝑥3 𝑇𝑇

𝑥𝑥1 𝑥𝑥2 𝑇𝑇 1 𝑥𝑥2 𝑥𝑥3 𝑇𝑇

𝑥𝑥1 𝑥𝑥3 𝑇𝑇 𝑥𝑥2 𝑥𝑥3 𝑇𝑇 1

different

(𝐶𝐶𝑝𝑝)−1= (𝐶𝐶𝑞𝑞)−1−(𝐶𝐶𝑞𝑞)−1V(𝐹𝐹 −1 + (𝑉𝑉)𝑇𝑇(𝐶𝐶𝑞𝑞)−1𝑉𝑉)−1(𝑉𝑉)𝑇𝑇(𝐶𝐶𝑞𝑞)−1

Improve lower bound
• Prune distance computation in computing k-NN graph by

approximating Euclidean distance E 𝑥𝑥𝑝𝑝, 𝑥𝑥𝑞𝑞
– SVD is a popular approach for approximation

• Improve lower bound by SVD E[�𝑥𝑥𝑝𝑝,�𝑥𝑥𝑞𝑞] as 𝐸𝐸[𝑥𝑥𝑝𝑝, 𝑥𝑥𝑞𝑞] in the
following form:

12

𝐸𝐸 𝑥𝑥𝑝𝑝, 𝑥𝑥𝑞𝑞 = (E[�𝑥𝑥𝑝𝑝,�𝑥𝑥𝑞𝑞])2+(𝑢𝑢𝑟𝑟 𝑥𝑥𝑝𝑝 − 𝑢𝑢𝑟𝑟 𝑥𝑥𝑞𝑞)2

𝑢𝑢𝑟𝑟 𝑥𝑥𝑝𝑝 = (E[𝑥𝑥𝑝𝑝, 𝑥𝑥𝑟𝑟])2− (E[�𝑥𝑥𝑝𝑝,�𝑥𝑥𝑞𝑞])2where

Distance
by SVD

Lower bound by dimensions
not used in SVD

Norm of dimensions not
used in SVD

We use triangular inequality in this approach

LU decomposition based Eigen decomposition

• Power method is the most popular approach in computing
Eigen vector
– But, it computes the largest not smallest Eigen values
– Embedding is the smallest Eigen vector of K = 𝐼𝐼 −𝑊𝑊 𝑇𝑇(𝐼𝐼 − 𝑊𝑊)

• Inverse power method computes the smallest Eigen value
– It apply power method for the inverse matrix
– Its computation cost is 𝑂𝑂 𝑁𝑁3

– Impractical for large-size of dataset

• We avoid the inverse matrix by LU decomposition
– We have sparse matrices after LU decomposition
– We can apply this approach of large graphs

13

LU decomposition based Eigen decomposition

• Compute LU decomposition for 𝐼𝐼 −𝑊𝑊 (LU = 𝐼𝐼 −𝑊𝑊)
– Thus we have K = 𝐼𝐼 −𝑊𝑊 𝑇𝑇 𝐼𝐼 −𝑊𝑊 = 𝑈𝑈𝑇𝑇𝐿𝐿𝑇𝑇𝐿𝐿𝑈𝑈

• The smallest Eigen value 𝜆𝜆N and its Eigen vector 𝑍𝑍𝑁𝑁 can
be computed as follows similar to power method:

• Since vector 𝑎𝑎𝜏𝜏 is updated as 𝑎𝑎𝜏𝜏−1 = 𝑈𝑈𝑇𝑇𝐿𝐿𝑇𝑇𝐿𝐿𝑈𝑈𝑎𝑎𝜏𝜏, we can
compute the smallest Eigen value
– Note we have 𝑎𝑎𝜏𝜏 = 𝐾𝐾−1𝑎𝑎𝜏𝜏−1 since K = 𝑈𝑈𝑇𝑇𝐿𝐿𝑇𝑇𝐿𝐿𝑈𝑈

14

𝜆𝜆N = ⁄(𝑎𝑎𝜏𝜏)𝑇𝑇𝑎𝑎𝜏𝜏 (𝑎𝑎𝜏𝜏)𝑇𝑇𝑎𝑎𝜏𝜏−1 𝑧𝑧N = ⁄𝑎𝑎𝜏𝜏 𝑎𝑎𝜏𝜏

where 𝑎𝑎𝜏𝜏−1 = 𝑈𝑈𝑇𝑇𝑏𝑏, 𝑏𝑏 = 𝑈𝑈𝑇𝑇𝑏𝑏′, 𝑏𝑏′ = 𝐿𝐿𝑏𝑏′′, 𝑏𝑏′′ = 𝑈𝑈𝑎𝑎𝜏𝜏

Theoretical analysis
• Ripple can efficiently obtain the same

embedding results as the original approaches

15

Experiment: preliminaries

• We used the following five datasets
– USPS; 7291 items and 256 features
– SensIT; 78,823 items and 100 features
– ALOI; 108,000 items and 128 features
– MSD; 515,345 items and 90 features
– INRIA; 1,000,000 items and 128 features

• Comparison methods
– CLLE: k-means based approach*3

– LLL: Nystrom method based approach*4

– VN: Nystrom method based approach*5

16

*3 Hui et al., “Clustering-based Locally Linear Embedding”, ICPR, 2008
*4 Vladymyrov et al., “Locally Linear Landmarks for Large-scale Manifold Learning”, ECML/PKDD, 2013
*5 Vladymyrov et al., “The Variational Nystr¨om Method for Large-Scale Spectral Problems”, ICML, 2016

Experiment: efficiency

• Wall clock time
– Ripple is much faster than existing methods

17

Up to 2,300
times faster

Up to 560,330, and 260 times
faster than previous methods

Ripple is scalable
to large data

Experiment: exactness (CLLE)
• Ripple yields the same result as the original approach
• CLLE has trade-off between efficiency and accuracy

against # clusters of k-means method

18

Accuracy Efficiency

Ripple is
exact

CLLE increases
error against #
clusters

CLLE increases
efficiency against
clusters

But, Ripple is
more efficient

Conclusions
• This study proposed an efficient approach for

Locally linear embedding (LLE)

• Our approach, Ripple, (1) incrementally compute
edge weights, (2) improve the lower bounds in
obtaining k-NN graph, and (3) exploits LU
decomposition in computing Eigen vectors

• Experimental results show that our approach is
faster than the previous approach

Thank you for your attention

	Scaling Locally Linear Embedding
	Introduction
	LLE: overview
	LLE: step1 k-NN graph
	LLE: step2 edge weight
	LLE: step 3 Eigen decomposition
	LLE: problem
	Proposed method
	Incremental weight computation
	Incremental weight computation
	Incremental weight computation
	Improve lower bound
	LU decomposition based Eigen decomposition
	LU decomposition based Eigen decomposition
	Theoretical analysis
	Experiment: preliminaries
	Experiment: efficiency
	Experiment: exactness (CLLE)
	Conclusions
	Thank you for your attention

