

SVD-Based Screening for the Graphical Lasso (IJCAI'17)

藤原 靖宏,**丸茂 直貴**,Mathieu Blondel, 竹内 孝,金 秀明,岩田 具治,上田 修功 NTT 研究所

スパース精度行列推定のための2つの高速化

手法を提案

扱う問題

スパース精度行列推定:

$$\min_{\Theta \in \mathbb{R}^{p \times p}} \operatorname{tr}(S\Theta) - \log \det \Theta + \rho \|\Theta\|_{1}$$

- $X \in \mathbb{R}^{n \times p}$: (中心化) データ行列
- $S = X^T X$: 標本共分散行列 (の n 倍)
- ||·||₁:要素ごとの1ノルム
- $\rho \in \mathbb{R}_{>0}$: 正則化パラメータ

扱う問題

スパース精度行列推定:

$$\min_{\Theta \in \mathbb{R}^{p \times p}} \operatorname{tr}(S\Theta) - \log \det \Theta + \rho \|\Theta\|_{1}$$

 $x \sim \mathcal{N}(0,\Sigma)$ のとき,

- 目的関数 = 負の対数尤度 + 正則化項
- 精度行列 $\Sigma^{-1} = (\lambda_{ij})$ に対し, $\lambda_{ij} = 0 \iff i,j$ は条件付き独立

扱う問題

スパース精度行列推定:

$$\min_{\Theta \in \mathbb{R}^{p \times p}} \operatorname{tr}(S\Theta) - \log \det \Theta + \rho \|\Theta\|_{1}$$

スパースな精度行列を推定することで 変数間の (スパースな) 依存関係が推定できる

• 精度行列 $\Sigma^{-1} = (\lambda_{ij})$ に対し, $\lambda_{ij} = 0 \iff i,j$ は条件付き独立

既存手法

- Graphical Lasso
- > その Screening

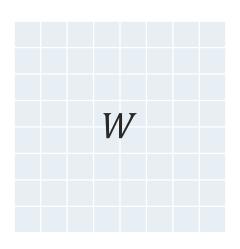
スパース精度行列推定:

$$\min_{\Theta \in \mathbb{R}^{p \times p}} \operatorname{tr}(S\Theta) - \log \det \Theta + \rho \|\Theta\|_{1}$$

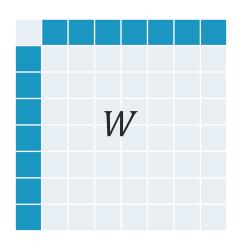
Graphical Lasso [Friedman (2007)]:

- 双対に対する Block Coordinate Descent
- 様々な高速化が提案されている最も有名な解法

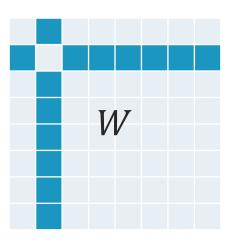
 $W \in \mathbb{R}^{p \times p}$: 双対変数



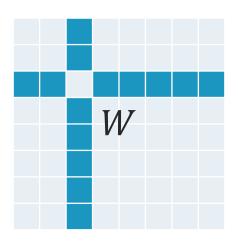
 $W \in \mathbb{R}^{p \times p}$: 双対変数



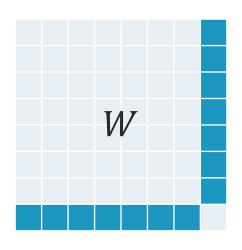
 $W \in \mathbb{R}^{p \times p}$: 双対変数



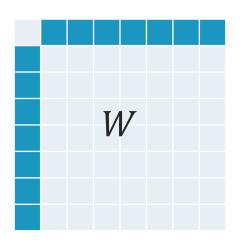
 $W \in \mathbb{R}^{p \times p}$: 双対変数



 $W \in \mathbb{R}^{p \times p}$: 双対変数



 $W \in \mathbb{R}^{p \times p}$: 双対変数



Graphical Lasso の1反復

$$W = \begin{bmatrix} W_A & W_B & W_B & \mathcal{W}_B & \mathcal{W}_D \end{bmatrix}$$
 がす

Graphical Lasso の 1 反復

$$W = \begin{bmatrix} W_A & W_B & W_B & \mathcal{W}_B \end{pmatrix}$$
 かず $W_B & \mathcal{W}_D$

1.
$$\hat{\beta} \leftarrow \underset{\beta \in \mathbb{R}^{p-1}}{\operatorname{argmin}} \left\{ \frac{1}{2} \beta^{\mathsf{T}} W_A \beta - s_B^{\mathsf{T}} \beta + \rho \|\beta\|_1 \right\}$$

2.
$$W_B \leftarrow W_A \hat{\beta}$$

3.
$$\theta_B \leftarrow -\frac{\widehat{\beta}}{w_D - w_B^{\mathsf{T}} \widehat{\beta}}$$

4.
$$\theta_D \leftarrow \frac{1}{w_D - w_B^\mathsf{T} \widehat{\beta}}$$

$$\Theta = egin{array}{cccc} \Theta_A & heta_B \ & heta_B^ op & heta_D \end{array}$$

Graphical Lasso の 1 反復

$$W = W_A W_B$$
$$W_B^{\mathsf{T}} W_D$$

w_R のみ動かす

1.
$$\hat{\beta} \leftarrow \underset{\beta \in \mathbb{R}^{p-1}}{\operatorname{argmin}} \left\{ \frac{1}{2} \beta^{\top} W_A \beta - s_B^{\top} \beta + \rho \|\beta\|_1 \right\}$$

2.
$$w_B \leftarrow W_A \hat{\beta}$$

3.
$$\theta_B \leftarrow -\frac{\widehat{\beta}}{w_D - w_B^{\mathsf{T}} \widehat{\beta}}$$

4.
$$\theta_D \leftarrow \frac{1}{w_D - w_B^{\mathsf{T}} \widehat{\beta}}$$

$$\Theta = \begin{array}{ccc} \Theta_A & \theta_B \\ & \theta_B^\top & \theta_D \end{array}$$

Graphical Lasso の Screening

事実 [Witten+ (2011)]

主最適解 Θ^* , 双対最適解 W^* はともに

$$A \in \mathbb{R}^{p \times p}$$
: $a_{ij} = \begin{cases} 1 & (|s_{ij}| > \rho) \\ 0 & (\text{otherwise}) \end{cases}$

と同じブロック対角構造を持つ

$$\min_{\Theta \in \mathbb{R}^{p \times p}} \operatorname{tr}(S\Theta) - \log \det \Theta + \rho \|\Theta\|_{1}$$

Graphical Lasso の Screening

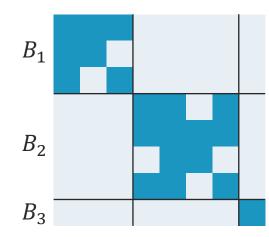
事実 [Witten+ (2011)]

主最適解 Θ^* , 双対最適解 W^* はともに

$$A \in \mathbb{R}^{p \times p}$$
: $a_{ij} = \begin{cases} 1 & (|s_{ij}| > \rho) \\ 0 & (\text{otherwise}) \end{cases}$

と同じブロック対角構造を持つ

小さいサイズの Graphical Lasso を m 個適用すればよい!



Graphical Lasso の Screening

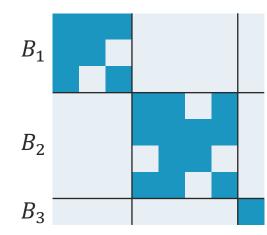
事実 [Witten+ (2011)]

主最適解 Θ^* , 双対最適解 W^* はともに

高速化が期待されるだけで 得られる解は変化しない

と同じブロック対角構造を持つ

小さいサイズの Graphical Lasso を m 個適用すればよい!



提案手法

- ➤ Screening の高速化
- ➤ Graphical Lasso の高速化

提案 Screening のアイデア

 $X \in \mathbb{R}^{n \times p}$ は与えられているが, 仮定: $S = X^T X \in \mathbb{R}^{p \times p}$ は与えられていない

 \triangleright S の計算に $O(np^2)$ かかる

提案 Screening のアイデア

 $X \in \mathbb{R}^{n \times p}$ は与えられているが, 仮定: $S = X^{\mathsf{T}}X \in \mathbb{R}^{p \times p}$ は与えられていない

▶ S の計算に *O(np*²) かかる

アイデア:

- 既存 Screening では S の全要素を正確に計算 🖰
- Θ*, W* の 0 ブロックに 対応する *S* の値は正確に 計算する必要は無い 🙂
 - > 上下界で代用



Sの上下界

• $X \simeq II\tilde{X}$ とランク k 近似 $(U \in \mathbb{R}^{n \times k} : \overline{\mathcal{M}}$ 直交)

$$X \simeq U$$

•
$$s_{ij} = x_i^{\mathsf{T}} x_j = \frac{1}{2} (\|x_i\|^2 + \|x_j\|^2 - \|x_i - x_j\|^2)$$

$$\leq \frac{1}{2} (\|x_i\|^2 + \|x_j\|^2 - \|\tilde{x}_i - \tilde{x}_j\|^2)$$

(下界も同様)

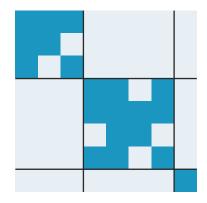
- Θ S の厳密計算は $O(np^2)$
- \odot S の上下界の計算は $O(np \log k + kp^2)$

提案 Screening の流れ

1. $S = X^T X$ の上下界 \overline{S} , S を計算

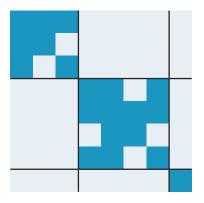
2.
$$A \in \mathbb{R}^{p \times p}$$
: $a_{ij} = \begin{cases} 1 & (\overline{s}_{ij} < -\rho \text{ or } \underline{s}_{ij} > \rho) \\ 0 & (\text{otherwise}) \end{cases}$ の行・列を置換し、ブロック対角化

- 3. *A* の対角ブロックに対応する *S* の値を厳密計算
- 4. *S* の各対角ブロックに対し **Graphical Lasso**



提案 Screening の流れ

- 1. $S = X^T X$ の上下界 \overline{S} , S を計算
- 2. $A \in \mathbb{R}^n$ 高速化が期待されるだけで 得られる解は変化しない
- 3. *A* の対角ブロックに対応する *S* の値を厳密計算
- 4. *S* の各対角ブロックに対し **Graphical Lasso**



提案手法

- ➤ Screening の高速化
- ➤ Graphical Lasso の高速化

Graphical Lasso の 1 反復 (再掲)

$$W = W_A W_B$$
$$W_B^{\mathsf{T}} W_D$$

w_R のみ動かす

1.
$$\hat{\beta} \leftarrow \underset{\beta \in \mathbb{R}^{p-1}}{\operatorname{argmin}} \left\{ \frac{1}{2} \beta^{\top} W_A \beta - s_B^{\top} \beta + \rho \|\beta\|_1 \right\}$$

2.
$$w_B \leftarrow W_A \hat{\beta}$$

3.
$$\theta_B \leftarrow -\frac{\beta}{w_D - w_B^{\mathsf{T}} \widehat{\beta}}$$

$$\theta_D \leftarrow \frac{1}{w_D - w^{\top} \widehat{R}}$$

Coordinate Descent 高速化

- **観察:** $|s_{ij}| > \rho$ なる (i,j) に対して $\theta_{ij} \neq 0$ となる ことが多そう
 - θ_R は $\hat{\beta}$ のスカラー倍

1.
$$\hat{\beta} \leftarrow \underset{\beta \in \mathbb{R}^{p-1}}{\operatorname{argmin}} \left\{ \frac{1}{2} \beta^{\mathsf{T}} W_A \beta - s_B^{\mathsf{T}} \beta + \rho \|\beta\|_1 \right\}$$

2.
$$W_B \leftarrow W_A \hat{\beta}$$

これも Coordinate Descent で解く

3.
$$\theta_B \leftarrow -\frac{\beta}{w_D - w_B^{\mathsf{T}} \widehat{\beta}}$$

4.
$$\theta_D \leftarrow \frac{1}{w_D - w_B^\mathsf{T} \widehat{\beta}}$$

$$\Theta = egin{array}{cccc} \Theta_A & heta_B \ & heta_B^{ op} & heta_D \end{array}$$

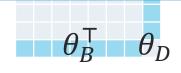
Coordinate Descent 高速化

- **観察:** $|s_{ij}| > \rho$ なる (i,j) に対して $\theta_{ij} \neq 0$ となる ことが多そう
 - θ_R は $\hat{\beta}$ のスカラー倍

1.
$$\hat{\beta} \leftarrow \underset{\beta \in \mathbb{R}^{p-1}}{\operatorname{argmin}} \left\{ \frac{1}{2} \beta^{\top} W_A \beta - s_B^{\top} \beta + \rho \|\beta\|_1 \right\}$$

1 を解く際に, $|s_{ij}| > \rho$ なる (i,j) に対応する β のみ非ゼロと決め打ちしたらどうか?

4.
$$\theta_D \leftarrow \frac{1}{w_D - w_B^\mathsf{T} \widehat{\beta}}$$



Coordinate Descent 高速化の流れ

- 1. $S: |s_{ij}| > \rho$ なる (i,j) に対応する β の添字集合
- 2. S に対応する β の要素のみ非ゼロと仮定して CD
- 3. $i \notin S$ なる β_i に対し、CD の反復を 1 回ずつ行い、 値が変化しないかを確認
- 4. 値が変化した *i* を *S* に追加し, 2に戻る

注: CD の不動点 ⇔ 最適解

Coordinate Descent 高速化の流れ

- 1. $S: |s_{ij}| > \rho$ なる (i,j) に対応する β の添字集合
- 2. Sに対応 高速化が期待されるだけで 定して CD 得られる解は変化しない
- 3. $i \notin S$ なっ β_i に対し、この以後で1回ずつ行い、 値が変化しないかを確認
- 4. 値が変化した *i* を *S* に追加し, 2に戻る

注: CD の不動点 ⇔ 最適解

数值実験

実験設定

データセット:

Madelon: 600×500

ISOLET: 6238×618

 1000×5000 Gisette:

 700×10000 Arcene:

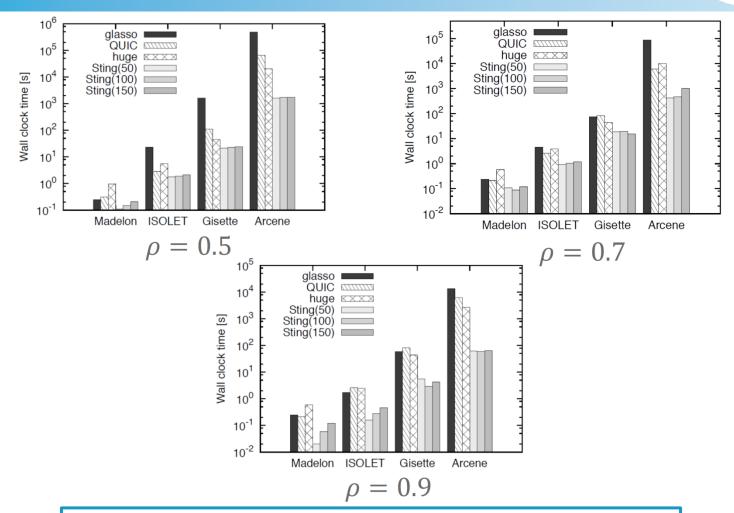
比較手法の実装:

Graphical Lasso based glasso [Friedman+ (2015)]:

Newton 法 based QUIC [Hsieh+ (2015)]:

CD 法 based huge [Zhao+ (2015)]:

実験結果: 実行時間の比較

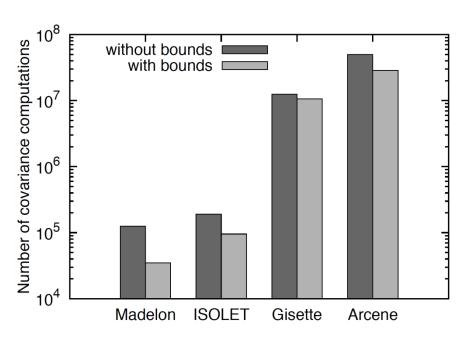


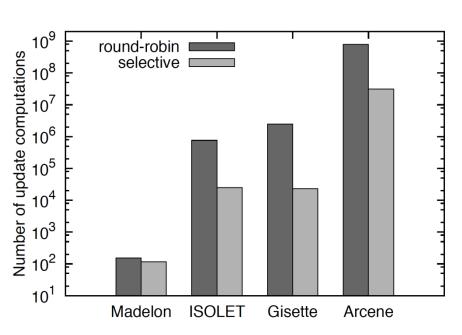
提案手法は数十~数百倍高速!

実験結果: 2 つの高速化の効果

Sの要素の計算個数

CD の反復数





スクリーニングの高速化も CDの高速化も効いている

まとめ

- スパース精度行列推定のための
 - ➤ Screening の高速化
 - ➤ Graphical Lasso の高速化 を提案
- 提案手法で得られる解は既存手法と同じ
- 提案手法の有効性を実験的に確認

