High Dimensional Consistent Digital Segments

Man-Kwun CHIU Matias KORMAN

National Institute of Informatics Tohoku University

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Real life...

590

...is digital

2

...Are beautiful!

・ロト ・ 日 ・ ・ ヨ ・

< ∃⇒

- …Are beautiful!
- Connected

● ▶ < ミ ▶

< ∃⇒

…Are beautiful!

Connected, uniquely defined

Man-Kwun Chiu Matias Korman High Dimensional Consistent Digital Segments

A (10) > (10)

3

...Are beautiful!

Connected, uniquely defined, can be extended, ...

Man-Kwun Chiu Matias Korman High Dimensional Consistent Digital Segments

Man-Kwun Chiu Matias Korman High Dimensional Consistent Digital Segments

Consistent Digital Segments (CDS)

Digital segments satisfy 5 Axioms :

- S1 Grid path property
- S2 Symmetry property
- S3 Subsegment property
- S4 Prolongation property
- S5 Monotonicity property

Objective :

 Design digital paths for any two grid points that preserve axioms. Digital segments satisfy 5 Axioms :

- S1 Grid path property
- S2 Symmetry property
- S3 Subsegment property
- S4 Prolongation property
- S5 Monotonicity property

Objective :

- Design digital paths for any two grid points that preserve axioms.
- Bonus! Can they resemble Euclidean segments?

• At a point we need an (infinite) tree.

イロト イポト イヨト イヨト

 At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))

- 4 回 2 - 4 □ 2 - 4 □

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))
- Intersection of two paths must be a path.

イロト イヨト イヨト イヨト

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))
- Intersection of two paths must be a path.
- ...also hold with all other trees.

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))
- Intersection of two paths must be a path.
- ...also hold with all other trees. (CDS)

A B K A B K

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))
- Intersection of two paths must be a path.
- ...also hold with all other trees. (CDS)
- …and that it resembles Euclidean segments!

How to measure resemblance?

- $h(A, B) = \max_{a \in A} \min_{b \in B} dist(a, b).$
- The Hausdorff distance between \overline{pq} and R(p,q)
- : $H(\overline{pq}, R(p, q)) = \max\{h(\overline{pq}, R(p, q)), h(R(p, q), \overline{pq})\}.$

How to measure resemblance?

- $h(A, B) = \max_{a \in A} \min_{b \in B} dist(a, b).$
- The Hausdorff distance between \overline{pq} and R(p,q)
- $: H(\overline{pq}, R(p,q)) = \max\{h(\overline{pq}, R(p,q)), h(R(p,q), \overline{pq})\}.$
- The **Hausdorff distance** of a CDS is defined as max_{p,q∈ℤ^d,||p-q||₁≤n H(pq, R(p, q)).}

Results

	(d = 2) Previous work	
	a construction from any per-	
	mutation θ of \mathbb{Z}	
CDR	a θ builds a quadrant	
(paths from one point)		
	any 2 ^{<i>d</i>} orders make a CDR	
Error	$\Theta(\log n)$ Hausdorff distance	

(ロ) (四) (注) (注) (注) [

Results

	(d = 2) Previous work	$(d \ge 3)$ New
	a construction from any per-	generalize the construction
	mutation $ heta$ of $\mathbb Z$	to higher dimensions
CDR	a $ heta$ builds a quadrant	a θ builds an orthant
(paths from one point)		
	any 2 ^d orders make a CDR	One order fixes the CDR
Error	$\Theta(\log n)$ Hausdorff distance	$\Theta(\log n)$ Hausdorff distance

(ロ) (四) (注) (注) (注) [

Our Results

< □ > < □ > < □ > < □ > < □ > < □ > = □

Our Results

< □ > < □ > < □ > < □ > < □ > < □ > = □

- Given a permutation θ , p = (1, 1), q = (5, 3).
- four moves in x_1 direction and 2 moves in x_2 direction.
- Associate each point $m = (m_1, m_2)$ to integer $m_1 + m_2$.

- Given a permutation θ , p = (1, 1), q = (5, 3).
- four moves in x_1 direction and 2 moves in x_2 direction.
- Associate each point $m = (m_1, m_2)$ to integer $m_1 + m_2$.
- Look at θ from $p_1 + p_2 = 2$ to $q_1 + q_2 1 = 7$.
- $\bullet \ \theta[2,7] = 7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5.$
- Look at the position of $m_1 + m_2$ in $\theta[2,7]$.
- Red numbers represent x₁ movements.

- Given a permutation θ , p = (1, 1), q = (5, 3).
- four moves in x_1 direction and 2 moves in x_2 direction.
- Associate each point $m = (m_1, m_2)$ to integer $m_1 + m_2$.
- Look at θ from $p_1 + p_2 = 2$ to $q_1 + q_2 1 = 7$.
- $\bullet \ \theta[2,7] = 7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5.$
- Look at the position of $m_1 + m_2$ in $\theta[2,7]$.
- Red numbers represent x₁ movements.

- Given a permutation θ , p = (1, 1), q = (5, 3).
- four moves in x_1 direction and 2 moves in x_2 direction.
- Associate each point $m = (m_1, m_2)$ to integer $m_1 + m_2$.
- Look at θ from $p_1 + p_2 = 2$ to $q_1 + q_2 1 = 7$.
- $\bullet \ \theta[2,7] = 7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5.$
- Look at the position of $m_1 + m_2$ in $\theta[2,7]$.
- Red numbers represent x₁ movements.

- Given a permutation θ , p = (1, 1), q = (5, 3).
- four moves in x_1 direction and 2 moves in x_2 direction.
- Associate each point $m = (m_1, m_2)$ to integer $m_1 + m_2$.
- Look at θ from $p_1 + p_2 = 2$ to $q_1 + q_2 1 = 7$.
- $\bullet \ \theta[2,7] = 7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5.$
- Look at the position of $m_1 + m_2$ in $\theta[2,7]$.
- Red numbers represent x₁ movements.

- Given a permutation θ , p = (1, 1), q = (5, 3).
- four moves in x_1 direction and 2 moves in x_2 direction.
- Associate each point $m = (m_1, m_2)$ to integer $m_1 + m_2$.
- Look at θ from $p_1 + p_2 = 2$ to $q_1 + q_2 1 = 7$.
- $\bullet \ \theta[2,7] = 7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5.$
- Look at the position of $m_1 + m_2$ in $\theta[2,7]$.
- Red numbers represent x₁ movements.

• Fix total order θ , construct a path from p to q.

- Fix total order θ , construct a path from p to q.
- We must move $|p_i q_i|$ times in the x_i -coordinate.

- Fix total order θ , construct a path from p to q.
- We must move $|p_i q_i|$ times in the x_i -coordinate.
- Partition $\theta[\sum_{i} p_i, \sum_{i} q_i 1]$ into *d* sub-intervals.

- Fix total order θ , construct a path from p to q.
- We must move $|p_i q_i|$ times in the x_i -coordinate.
- Partition $\theta[\sum_i p_i, \sum_i q_i 1]$ into *d* sub-intervals.
- Look at the position of $\sum m_i$ in θ .

同下 イヨト イヨト

- Fix total order θ , construct a path from p to q.
- We must move $|p_i q_i|$ times in the x_i -coordinate.
- Partition $\theta[\sum_i p_i, \sum_i q_i 1]$ into *d* sub-intervals.
- Look at the position of $\sum m_i$ in θ .
- We need an axis-order to be consistent.

Axis-order

 $\begin{array}{rl} \text{slope} & \text{axis-order} \\ (+1,+1,+1) & x_1,x_2,x_3 \\ (+1,-1,-1) & x_1,x_3,x_2 \\ (-1,+1,+1) & x_2,x_3,x_1 \\ & \cdots & & \cdots \end{array}$

 $\begin{array}{c} \text{From } (1,1,0) \text{ to } (3,5,4) \quad \text{slope}=(+1,+1,+1) \\ \\ \begin{array}{c} x_1 & x_2 & x_3 \\ \hline & & & \\ \end{array} \\ \theta[2,11] = 5 \prec 3 \prec 2 \prec 7 \prec 9 \prec 8 \prec 11 \prec 10 \prec 6 \prec 4 \\ \hline & & & \\ \end{array} \\ \begin{array}{c} x_2 & x_3 & x_1 \\ \hline & & \\ \end{array} \\ \text{From } (1,1,2) \text{ to } (-3,5,4) \quad \text{slope}=(-1,+1,+1) \end{array}$

slope of p, q

$$t = (t_1, t_2, \dots, t_d) \in \{+1, -1\}^d$$
, where $t_i = +1$ if $p_i \le q_i$
and is -1 if $p_i \ge q_i$.

Man-Kwun Chiu Matias Korman High Dimensional Consistent Digital Segments

• In \mathbb{Z}^2 a total order determines a quadrant

- \blacksquare In \mathbb{Z}^2 a total order determines a quadrant
- Any 4 total orders combined form a CDR

Fix p ∈ Z^d, total order θ, and slope t, create an orthant
 Denoted by TOC(θ, p, t).

- Fix p ∈ Z^d, total order θ, and slope t, create an orthant
 Denoted by TOC(θ, p, t).
- \Rightarrow Glue 2^d orthants $\bigcup_{t\in\mathcal{T}} TOC(\theta_t, p, t)$ of different slopes

- Fix $p \in Z^d$, total order θ , and slope t, create an orthant
- Denoted by $TOC(\theta, p, t)$.
- \Rightarrow Glue 2^d orthants $\bigcup_{t \in T} TOC(\theta_t, p, t)$ of different slopes
 - Question do we always make a CDR?

Theorem

$$\bigcup_{t \in T} TOC(\theta_t, p, t) \text{ is a CDR if and only if} \\ \theta_t = \theta_{t'} - t' \cdot p + t \cdot p.$$

→ @ → → 注 → → 注 →

Theorem

$$\bigcup_{t \in T} TOC(\theta_t, p, t) \text{ is a CDR if and only if } \\ \theta_t = \theta_{t'} - t' \cdot p + t \cdot p.$$

Example

$$p = (2, 2, 0), t = (+1, +1, +1), t' = (+1, -1, -1)$$

$$t \cdot p = 4, t' \cdot p = 0, -t' \cdot p + t \cdot p = 4$$

< ロ > < 回 > < 回 > < 回 > < 回 > <

Э

Theorem

$$\bigcup_{t \in T} TOC(\theta_t, p, t) \text{ is a CDR if and only if } \\ \theta_t = \theta_{t'} - t' \cdot p + t \cdot p.$$

Example

•
$$p = (2, 2, 0), t = (+1, +1, +1), t' = (+1, -1, -1)$$

• $t \cdot p = 4, t' \cdot p = 0, -t' \cdot p + t \cdot p = 4$
 $\theta_{t'} = \dots \prec 5 \prec 4 \prec 6 \prec \dots$

$$\theta_{t} = \theta_{t'} + \mathbf{4} = \ldots \prec 9 \prec 8 \prec 10 \prec \ldots$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Look at CDS now (paths for any pair of points)

▲ 문 → ▲ 문

Look at CDS now (paths for any pair of points)
In Z², two orders create a *half* CDR

▲ 문 → ▲ 문

- Look at CDS now (paths for any pair of points)
- In Z^2 , two orders create a *half* CDR
- Repeat at all points to get a CDS

• 3 >

- Look at CDS now (paths for any pair of points)
- In Z^2 , two orders create a *half* CDR
- Repeat at all points to get a CDS

< ∃ >

- Look at CDS now (paths for any pair of points)
- In Z^2 , two orders create a *half* CDR
- Repeat at all points to get a CDS
- Similar approach for higher dimensions?

• One total order θ fixes a CDR $TOC(\theta, p)$

→ Ξ →

- One total order θ fixes a CDR $TOC(\theta, p)$
- To make a CDS, we consider $\bigcup_{p \in \mathbb{Z}^d} TOC(\theta, p)$.

Theorem

 $\bigcup_{p \in \mathbb{Z}^d} TOC(\theta, p) \text{ is CDS if and only if } \theta = \theta + 2 \text{ and } \theta = -(\theta + 1)^{-1}.$

個 と く ヨ と く ヨ と

- One total order θ fixes a CDR $TOC(\theta, p)$
- To make a CDS, we consider $\bigcup_{p \in \mathbb{Z}^d} TOC(\theta, p)$.

Theorem

 $\bigcup_{p \in \mathbb{Z}^d} TOC(\theta, p) \text{ is CDS if and only if } \theta = \theta + 2 \text{ and } \theta = -(\theta + 1)^{-1}.$

Example

Assume that $1 \prec_{\theta} 2$ in θ

イロト イヨト イヨト イヨト

- One total order θ fixes a CDR $TOC(\theta, p)$
- To make a CDS, we consider $\bigcup_{p \in \mathbb{Z}^d} TOC(\theta, p)$.

Theorem

 $\bigcup_{p \in \mathbb{Z}^d} TOC(\theta, p) \text{ is CDS if and only if } \theta = \theta + 2 \text{ and } \theta = -(\theta + 1)^{-1}.$

Example

Assume that $1 \prec_{\theta} 2$ in θ $\theta = \theta + 2 \qquad \Rightarrow 3 \prec_{\theta} 4$ must hold

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- One total order θ fixes a CDR $TOC(\theta, p)$
- To make a CDS, we consider $\bigcup_{p \in \mathbb{Z}^d} TOC(\theta, p)$.

Theorem

 $\bigcup_{p \in \mathbb{Z}^d} TOC(\theta, p) \text{ is CDS if and only if } \theta = \theta + 2 \text{ and } \theta = -(\theta + 1)^{-1}.$

Example

Assume that $1 \prec_{\theta} 2$ in θ $\theta = \theta + 2 \implies 3 \prec_{\theta} 4$ must hold $\theta = -(\theta + 1)^{-1} \Rightarrow -3 \prec_{\theta} -2$ must hold

イロン 不良と 不良とう

For any p, q we must have R(p, q) = R(q, p).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

- For any p, q we must have R(p, q) = R(q, p).
- R(p,q) is constructed with θ_t , R(q,p) with θ_{-t}

回り くほり くほう

- For any p, q we must have R(p, q) = R(q, p).
- R(p,q) is constructed with θ_t , R(q,p) with θ_{-t}
- Paths must be identical

個 と く ヨ と く ヨ と

- For any p, q we must have R(p, q) = R(q, p).
- R(p,q) is constructed with θ_t , R(q,p) with θ_{-t}
- Paths must be identical
 - Decisions are at different end points

個 と く ヨ と く ヨ と

- For any p, q we must have R(p, q) = R(q, p).
- R(p,q) is constructed with θ_t , R(q,p) with θ_{-t}
- Paths must be identical
 - Decisions are at different end points
 - $\bullet \ \theta_{-t} \approx -(\theta_t + 1)$

(4回) (1日) (日)

- For any p, q we must have R(p, q) = R(q, p).
- R(p,q) is constructed with θ_t , R(q,p) with θ_{-t}
- Paths must be identical
 - Decisions are at different end points
 - $\bullet \ \theta_{-t} \approx -(\theta_t + 1)$
- The axis-order of -t is the reverse axis-order of t

Summary

Results

- Extended the approach of Christ *et al* to \mathbb{Z}^d .
- We can always make a CDR from θ .
- Characterize when we make a CDS.
- Always high Hausdorff distance

Summary

Results

- Extended the approach of Christ *et al* to \mathbb{Z}^d .
- We can always make a CDR from θ .
- Characterize when we make a CDS.
- Always high Hausdorff distance
- Let's not use total orders in high dimensions!

Summary

Results

- Extended the approach of Christ *et al* to \mathbb{Z}^d .
- We can always make a CDR from θ .
- Characterize when we make a CDS.
- Always high Hausdorff distance
- Let's not use total orders in high dimensions!

Open Problems

- Different approach to make CDSs?
- o(n) Hausdorff distance?
- Fully characterize CDRs/CDSs in \mathbb{Z}^d ?

Questions?Comments?

Thank you!

Man-Kwun Chiu Matias Korman High Dimensional Consistent Digital Segments

ъ