High Dimensional Consistent Digital Segments

Man-Kwun Chiu Matias Korman
National Institute of Informatics Tohoku University

Real life...

...is digital

Man-Kwun Chiu Matias Korman
High Dimensional Consistent Digital Segments

Euclidean Segments...

■ ...Are beautiful!

Euclidean Segments...

■ ...Are beautiful!
■ Connected

Euclidean Segments...

- ...Are beautiful!

■ Connected, uniquely defined

Euclidean Segments...

■ ...Are beautiful!
■ Connected, uniquely defined, can be extended, ...

Digital Segments...

Digital Segments...

Digital Segments...

Digital Segments...

Consistent Digital Segments (CDS)

Digital segments satisfy 5 Axioms :
S1 Grid path property
S2 Symmetry property
S3 Subsegment property
S4 Prolongation property
S5 Monotonicity property
Objective :
■ Design digital paths for any two grid points that preserve axioms.

Consistent Digital Segments (CDS)

Digital segments satisfy 5 Axioms :
S1 Grid path property
S2 Symmetry property
S3 Subsegment property
S4 Prolongation property
S5 Monotonicity property
Objective :

- Design digital paths for any two grid points that preserve axioms.
■ Bonus! Can they resemble Euclidean segments?

Intuitive idea

- At a point we need an (infinite) tree.

Intuitive idea

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))

Intuitive idea

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))
- Intersection of two paths must be a path.

Intuitive idea

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))
- Intersection of two paths must be a path.

■ ...also hold with all other trees.

Intuitive idea

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))
- Intersection of two paths must be a path.
- ...also hold with all other trees. (CDS)

Intuitive idea

- At a point we need an (infinite) tree. (Consistent Digital Rays (CDR))
- Intersection of two paths must be a path.
- ...also hold with all other trees. (CDS)

■ ...and that it resembles Euclidean segments!

How to measure resemblance?

- $h(A, B)=\max _{a \in A} \min _{b \in B} \operatorname{dist}(a, b)$.
- The Hausdorff distance between $\overline{p q}$ and $R(p, q)$
$: H(\overline{p q}, R(p, q))=\max \{h(\overline{p q}, R(p, q)), h(R(p, q), \overline{p q})\}$.

How to measure resemblance?

- $h(A, B)=\max _{a \in A} \min _{b \in B} \operatorname{dist}(a, b)$.
- The Hausdorff distance between $\overline{p q}$ and $R(p, q)$
$: H(\overline{p q}, R(p, q))=\max \{h(\overline{p q}, R(p, q)), h(R(p, q), \overline{p q})\}$.
- The Hausdorff distance of a CDS is defined as $\max _{p, q \in \mathbb{Z}^{d},\|p-q\|_{1} \leq n} H(\overline{p q}, R(p, q))$.

Results

	$(d=2)$ Previous work	
	a construction from any per- mutation θ of \mathbb{Z}	
CDR	a θ builds a quadrant	
(paths from one point)		

Results

	$(d=2)$ Previous work	$(d \geq 3)$ New
	a construction from any per- mutation θ of \mathbb{Z}	generalize the construction to higher dimensions
CDR	a θ builds a quadrant	a θ builds an orthant
(paths from one point)		
any 2 ${ }^{d}$ orders make a CDR	One order fixes the CDR	
Error	$\Theta(\log n)$ Hausdorff distance	Θ (log $n)$ Hausdorff distance

Our Results

	$(d=2)$ Previous work		
CDS	any 2^{d-1} orders make a CDS		
(paths to/from anywhere)			
Error			

Our Results

	$(d=2)$ Previous work	$(d \geq 3)$ New
CDS	any 2^{d-1} orders make a CDS	Some orders work
(paths to/from anywhere)		

Two-Dimensional Background

- Given a permutation $\theta, p=(1,1), q=(5,3)$.
- four moves in x_{1} direction and 2 moves in x_{2} direction.
- Associate each point $m=\left(m_{1}, m_{2}\right)$ to integer $m_{1}+m_{2}$.

Two-Dimensional Background

- Given a permutation $\theta, p=(1,1), q=(5,3)$.
- four moves in x_{1} direction and 2 moves in x_{2} direction.

■ Associate each point $m=\left(m_{1}, m_{2}\right)$ to integer $m_{1}+m_{2}$.

- Look at θ from $p_{1}+p_{2}=2$ to $q_{1}+q_{2}-1=7$.

■ $\theta[2,7]=7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5$.
■ Look at the position of $m_{1}+m_{2}$ in $\theta[2,7]$.

- Red numbers represent x_{1} movements.

Two-Dimensional Background

- Given a permutation $\theta, p=(1,1), q=(5,3)$.
- four moves in x_{1} direction and 2 moves in x_{2} direction.

■ Associate each point $m=\left(m_{1}, m_{2}\right)$ to integer $m_{1}+m_{2}$.
■ Look at θ from $p_{1}+p_{2}=2$ to $q_{1}+q_{2}-1=7$.
■ $\theta[2,7]=7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5$.
■ Look at the position of $m_{1}+m_{2}$ in $\theta[2,7]$.

- Red numbers represent x_{1} movements.

Two-Dimensional Background

- Given a permutation $\theta, p=(1,1), q=(5,3)$.
- four moves in x_{1} direction and 2 moves in x_{2} direction.

■ Associate each point $m=\left(m_{1}, m_{2}\right)$ to integer $m_{1}+m_{2}$.
■ Look at θ from $p_{1}+p_{2}=2$ to $q_{1}+q_{2}-1=7$.
■ $\theta[2,7]=7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5$.
■ Look at the position of $m_{1}+m_{2}$ in $\theta[2,7]$.

- Red numbers represent x_{1} movements.

Two-Dimensional Background

- Given a permutation $\theta, p=(1,1), q=(5,3)$.
- four moves in x_{1} direction and 2 moves in x_{2} direction.

■ Associate each point $m=\left(m_{1}, m_{2}\right)$ to integer $m_{1}+m_{2}$.

- Look at θ from $p_{1}+p_{2}=2$ to $q_{1}+q_{2}-1=7$.

■ $\theta[2,7]=7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5$.

- Look at the position of $m_{1}+m_{2}$ in $\theta[2,7]$.
- Red numbers represent x_{1} movements.

Two-Dimensional Background

- Given a permutation $\theta, p=(1,1), q=(5,3)$.
- four moves in x_{1} direction and 2 moves in x_{2} direction.

■ Associate each point $m=\left(m_{1}, m_{2}\right)$ to integer $m_{1}+m_{2}$.

- Look at θ from $p_{1}+p_{2}=2$ to $q_{1}+q_{2}-1=7$.

■ $\theta[2,7]=7 \prec 6 \prec 4 \prec 2 \prec 3 \prec 5$.
■ Look at the position of $m_{1}+m_{2}$ in $\theta[2,7]$.

- Red numbers represent x_{1} movements.

Let's extend this to high dimensions!

- Fix total order θ, construct a path from p to q.

Let's extend this to high dimensions!

- Fix total order θ, construct a path from p to q.

■ We must move $\left|p_{i}-q_{i}\right|$ times in the x_{i}-coordinate.

Let's extend this to high dimensions!

- Fix total order θ, construct a path from p to q.

■ We must move $\left|p_{i}-q_{i}\right|$ times in the x_{i}-coordinate.
■ Partition $\theta\left[\sum_{i} p_{i}, \sum_{i} q_{i}-1\right]$ into d sub-intervals.

Let's extend this to high dimensions!

- Fix total order θ, construct a path from p to q.

■ We must move $\left|p_{i}-q_{i}\right|$ times in the x_{i}-coordinate.
■ Partition $\theta\left[\sum_{i} p_{i}, \sum_{i} q_{i}-1\right]$ into d sub-intervals.
■ Look at the position of $\sum m_{i}$ in θ.

Let's extend this to high dimensions!

- Fix total order θ, construct a path from p to q.

■ We must move $\left|p_{i}-q_{i}\right|$ times in the x_{i}-coordinate.
■ Partition $\theta\left[\sum_{i} p_{i}, \sum_{i} q_{i}-1\right]$ into d sub-intervals.

- Look at the position of $\sum m_{i}$ in θ.

■ We need an axis-order to be consistent.

$$
\begin{array}{cc}
\text { slope } & \text { axis-order } \\
(+1,+1,+1) & x_{1}, x_{2}, x_{3} \\
(+1,-1,-1) & x_{1}, x_{3}, x_{2} \\
(-1,+1,+1) & x_{2}, x_{3}, x_{1}
\end{array}
$$

From $(1,1,0)$ to $(3,5,4) \quad$ slope $=(+1,+1,+1)$

From $(1,1,2)$ to $(-3,5,4)$ slope $=(-1,+1,+1)$

slope of p, q

$\mathrm{t}=\left(t_{1}, t_{2}, \ldots, t_{d}\right) \in\{+1,-1\}^{d}$, where $t_{i}=+1$ if $p_{i} \leq q_{i}$ and is -1 if $p_{i} \geq q_{i}$.

- In \mathbb{Z}^{2} a total order determines a quadrant

- In \mathbb{Z}^{2} a total order determines a quadrant
- Any 4 total orders combined form a CDR

■ Fix $p \in Z^{d}$, total order θ, and slope t , create an orthant
■ Denoted by $T O C(\theta, p, \mathrm{t})$.

■ Fix $p \in Z^{d}$, total order θ, and slope t , create an orthant

- Denoted by TOC (θ, p, t).
\Rightarrow Glue 2^{d} orthants $\bigcup_{\mathrm{t} \in T} T O C\left(\theta_{\mathrm{t}}, p, \mathrm{t}\right)$ of different slopes

- Fix $p \in Z^{d}$, total order θ, and slope t , create an orthant
- Denoted by TOC (θ, p, t).
\Rightarrow Glue 2^{d} orthants $\bigcup_{\mathrm{t} \in T} T O C\left(\theta_{\mathrm{t}}, p, \mathrm{t}\right)$ of different slopes
■ Question do we always make a CDR?

Necessary and sufficient condition for CDRs

Theorem
 $\bigcup_{\mathrm{t} \in T} \operatorname{TOC}\left(\theta_{\mathrm{t}}, p, \mathrm{t}\right)$ is a CDR if and only if $\theta_{\mathrm{t}}=\theta_{\mathrm{t}^{\prime}}-\mathrm{t}^{\prime} \cdot p+\mathrm{t} \cdot \mathrm{p}$.

Necessary and sufficient condition for CDRs

Theorem

$$
\begin{aligned}
& \bigcup_{\mathrm{t} \in T} \operatorname{TOC}\left(\theta_{\mathrm{t}}, p, \mathrm{t}\right) \text { is a CDR if and only if } \\
& \theta_{\mathrm{t}}=\theta_{\mathrm{t}^{\prime}}-\mathrm{t}^{\prime} \cdot p+\mathrm{t} \cdot p .
\end{aligned}
$$

Example

- $p=(2,2,0), \mathrm{t}=(+1,+1,+1), \mathrm{t}^{\prime}=(+1,-1,-1)$
- $\mathrm{t} \cdot \mathrm{p}=4, \mathrm{t}^{\prime} \cdot p=0,-\mathrm{t}^{\prime} \cdot p+\mathrm{t} \cdot p=4$

Necessary and sufficient condition for CDRs

Theorem

$$
\begin{aligned}
& \bigcup_{\mathrm{t} \in T} T O C\left(\theta_{\mathrm{t}}, p, \mathrm{t}\right) \text { is a CDR if and only if } \\
& \theta_{\mathrm{t}}=\theta_{\mathrm{t}^{\prime}}-\mathrm{t}^{\prime} \cdot p+\mathrm{t} \cdot p .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \quad p=(2,2,0), \mathrm{t}=(+1,+1,+1), \mathrm{t}^{\prime}=(+1,-1,-1) \\
& \square \mathrm{t} \cdot p=4, \mathrm{t}^{\prime} \cdot p=0,-\mathrm{t}^{\prime} \cdot p+\mathrm{t} \cdot p=4 \\
& \theta_{\mathrm{t}^{\prime}}=\ldots \prec 5 \prec 4 \prec 6 \prec \ldots \\
& \theta_{\mathrm{t}}=\theta_{\mathrm{t}^{\prime}}+4=\ldots \prec 9 \prec 8 \prec 10 \prec \ldots
\end{aligned}
$$

What about CDSs?

■ Look at CDS now (paths for any pair of points)

What about CDSs?

- Look at CDS now (paths for any pair of points)

■ In Z^{2}, two orders create a half CDR

What about CDSs?

- Look at CDS now (paths for any pair of points)
- In Z^{2}, two orders create a half CDR

■ Repeat at all points to get a CDS

What about CDSs?

- Look at CDS now (paths for any pair of points)
- In Z^{2}, two orders create a half CDR
- Repeat at all points to get a CDS

What about CDSs?

■ Look at CDS now (paths for any pair of points)

- In Z^{2}, two orders create a half CDR
- Repeat at all points to get a CDS
- Similar approach for higher dimensions?

Necessary and sufficient condition for CDSs

- One total order θ fixes a $\operatorname{CDR~} \operatorname{TOC}(\theta, p)$

Necessary and sufficient condition for CDSs

- One total order θ fixes a $\operatorname{CDR~} \operatorname{TOC}(\theta, p)$
- To make a CDS, we consider $\bigcup_{p \in \mathbb{Z}^{d}} T O C(\theta, p)$.

> Theorem
> $\bigcup_{p \in \mathbb{Z}^{d}} T O C(\theta, p)$ is $C D S$ if and only if $\theta=\theta+2$ and $\theta=-(\theta+1)^{-1}$.

Necessary and sufficient condition for CDSs

- One total order θ fixes a $\operatorname{CDR~} \operatorname{TOC}(\theta, p)$
- To make a CDS, we consider $\bigcup_{p \in \mathbb{Z}^{d}} T O C(\theta, p)$.

> Theorem
> $\bigcup_{p \in \mathbb{Z}^{d}} \operatorname{TOC}(\theta, p)$ is $C D S$ if and only if $\theta=\theta+2$ and $\theta=-(\theta+1)^{-1}$.

Example

Assume that $1 \prec_{\theta} 2$ in θ

Necessary and sufficient condition for CDSs

- One total order θ fixes a $\operatorname{CDR~} \operatorname{TOC}(\theta, p)$
- To make a CDS, we consider $\bigcup_{p \in \mathbb{Z}^{d}} T O C(\theta, p)$.

> Theorem
> $\bigcup_{p \in \mathbb{Z}^{d}} \operatorname{TOC}(\theta, p)$ is $C D S$ if and only if $\theta=\theta+2$ and $\theta=-(\theta+1)^{-1}$.

Example

Assume that $1 \prec_{\theta} 2$ in θ
$\theta=\theta+2 \quad \Rightarrow 3 \prec_{\theta} 4$ must hold

Necessary and sufficient condition for CDSs

- One total order θ fixes a $\operatorname{CDR~} \operatorname{TOC}(\theta, p)$
- To make a CDS, we consider $\bigcup_{p \in \mathbb{Z}^{d}} T O C(\theta, p)$.

Theorem

$\bigcup_{p \in \mathbb{Z}^{d}} \operatorname{TOC}(\theta, p)$ is CDS if and only if $\theta=\theta+2$ and $\theta=-(\theta+1)^{-1}$.

Example

Assume that $1 \prec_{\theta} 2$ in θ
$\theta=\theta+2 \quad \Rightarrow 3 \prec_{\theta} 4$ must hold
$\theta=-(\theta+1)^{-1} \Rightarrow-3 \prec_{\theta}-2$ must hold

Why $\theta=-(\theta+1)^{-1}$?

- For any p, q we must have $R(p, q)=R(q, p)$.

Why $\theta=-(\theta+1)^{-1}$?

- For any p, q we must have $R(p, q)=R(q, p)$.
- $R(p, q)$ is constructed with $\theta_{\mathrm{t}}, R(q, p)$ with $\theta_{-\mathrm{t}}$

Why $\theta=-(\theta+1)^{-1}$?

- For any p, q we must have $R(p, q)=R(q, p)$.
- $R(p, q)$ is constructed with $\theta_{\mathrm{t}}, R(q, p)$ with $\theta_{-\mathrm{t}}$
- Paths must be identical

Why $\theta=-(\theta+1)^{-1}$?

- For any p, q we must have $R(p, q)=R(q, p)$.
- $R(p, q)$ is constructed with $\theta_{\mathrm{t}}, R(q, p)$ with $\theta_{-\mathrm{t}}$
- Paths must be identical
- Decisions are at different end points

Why $\theta=-(\theta+1)^{-1}$?

- For any p, q we must have $R(p, q)=R(q, p)$.
- $R(p, q)$ is constructed with $\theta_{\mathrm{t}}, R(q, p)$ with $\theta_{-\mathrm{t}}$
- Paths must be identical
- Decisions are at different end points
- $\theta_{-\mathrm{t}} \approx-\left(\theta_{\mathrm{t}}+1\right)$

Why $\theta=-(\theta+1)^{-1}$?

- For any p, q we must have $R(p, q)=R(q, p)$.
- $R(p, q)$ is constructed with $\theta_{\mathrm{t}}, R(q, p)$ with $\theta_{-\mathrm{t}}$
- Paths must be identical
- Decisions are at different end points
- $\theta_{-\mathrm{t}} \approx-\left(\theta_{\mathrm{t}}+1\right)$
- The axis-order of $-t$ is the reverse axis-order of t

Summary

Results

- Extended the approach of Christ et al to \mathbb{Z}^{d}.
- We can always make a CDR from θ.

■ Characterize when we make a CDS.

- Always high Hausdorff distance

Summary

Results

- Extended the approach of Christ et al to \mathbb{Z}^{d}.
- We can always make a CDR from θ.

■ Characterize when we make a CDS.

- Always high Hausdorff distance
- Let's not use total orders in high dimensions!

Summary

Results

- Extended the approach of Christ et al to \mathbb{Z}^{d}.
- We can always make a CDR from θ.

■ Characterize when we make a CDS.

- Always high Hausdorff distance
- Let's not use total orders in high dimensions!

Open Problems

- Different approach to make CDSs?
- o(n) Hausdorff distance?
- Fully characterize CDRs/CDSs in \mathbb{Z}^{d} ?

Questions?Comments?

Thank you!

