

ERATO感謝祭 SeasonIV 2017.8.3@NII

Large-Scale Price Optimization via Network Flow

Shinji Ito, Ryohei Fujimaki

© NEC Corporation 2017

NEC Group Internal Use Only

Our goal: profit maximization by optimizing prices

What is the best pricing strategy?

Stra	tegy 1		Strategy 2	
è	: \$ 1.3	Price	è : \$ 1.0	
		Sales quantity		
	?	Profit	?	

Our goal: profit maximization by optimizing prices

What is the best pricing strategy?

Complicated structure in price optimization

Changing the price of one product affects other's sales

	Price	Quantity	Profit		
Product 1	\$1.3 → \$ 1.0	+200	+ \$80		
Product 2	\$1.2	-100	- \$120		
Gross profit - \$40					

© NEC Corporation 2017

Predictive price optimization and its difficulty

Recent advanced ML reveals relationship between prices and sales quantities

Input:						
pos data		Price	Price	Sales	Sales	• • •
	Day 1	\$1.3	\$1.0	2	2	•••
	Day 2	\$1.2	\$1.0	4	2	
	:	:	:	:	:	

Machine learning

Predictive model: sales = f(prices)

Predictive price optimization and its difficulty

Recent advanced ML reveals relationship between prices and sales quantities

Input: pos data		Price	Price	Sales	Sales	• • •
	Day 1	\$1.3	\$1.0	2	2	•••
	Day 2	\$1.2	\$1.0	4	2	
	:	•		•	:	

Machine learning

Predictive model: sales = f(prices)

Optimization (NP-hard) [This work]

Output: optimal prices

NEC Group Internal Use Only

Scalable algorithm for price optimization Based on:

- 1. Submodularity behind pricing
- 2. Network flow algorithm
- 3. Supermodular relaxation

Scalable algorithm for price optimization Based on:

- 1. Submodularity behind pricing
- 2. Network flow algorithm
- 3. Supermodular relaxation

Achieved:

- Can deal with thousands of products
- High accuracy for real-data problem

Table of contents

1. Introduction

2. Problem definition

- 3. Scalable price optimization algorithm
- 4. Experiments

Objective function of price optimization

Want to maximize is the gross profit ℓ

Gross profit: $\ell(p_1, p_2, \dots, p_M) = \sum_{i=1}^{M} (p_i - c_i) q_i$ $\int_{\text{price cost sales quantity}} product id$ Unknown, but predictable

Predictive model for sales quantity

Sales quantity q_i is a function in prices p_i

$$\underline{q_1(p,r)} = f_{11}(\underline{p_1}) + f_{12}(\underline{p_2}) + \cdots + g_{11}(\underline{r_1}) + g_{12}(\underline{r_2}) + \cdots$$
sales price price weather calendar
quantity

Use historical data to infer f_i , g_i

Ex: $f_i(p_j) = a_i p_j^2 + b_i p_j + c_i j$ (polynomial model) $f_i(p_j) = \exp(\alpha_i p_j + \beta_i)$, (generalized linear model)

Predictive model for sales quantity

Sales quantity q_i is a function in prices p_i

Substitute goods in price optimization

A commercial solver takes >24[h] for 50 products

Table of contents

- 1. Introduction
- 2. Problem definition

3. Scalable price optimization algorithm

4. Experiments

Scalable algorithm for price optimization Based on:

- 1. Submodularity behind pricing
- 2. Network flow algorithm
- 3. Supermodular relaxation

Idea 1: Substitute goods and supermodular

Connection between substitute goods and submodular

Theorem [Substitute goods ⇒ **supermodular]**

If all pairs of products are substitute goods or independent

 $\Rightarrow \ell(p)$ is a <u>supermodular function</u>

Idea 1: Substitute goods and supermodular

Connection between substitute goods and submodular

Theorem [Substitute goods \Rightarrow **supermodular]**

If all pairs of products are substitute goods or independent

 $\Rightarrow \ell(p)$ is a <u>supermodular function</u>

maximized in polynomial time

[Iwata, Fleischer, Fujishige (2001)]

This approach is still impractical because of two issues

Issue 1: General supermodular maximization is slow $\sim O(n^5)$

Issue 2: Substitute goods assumption is too restrictive

This approach is still impractical because of two issues

Issue 1: General supermodular maximization is slow $\sim O(n^5)$ Resolved by 2. network flow: $O(n^2) \sim O(n^3)$

Issue 2: Substitute goods assumption is too restrictive Resolved by 3. supermodular relaxation Applicable for non-substitute

This approach is still impractical because of two issues

Issue 1: General supermodular maximization is slow $\sim O(n^5)$ Resolved by 2. network flow: $O(n^2) \sim O(n^3)$

Issue 2: Substitute goods assumption is too restrictive Resolved by 3. supermodular relaxation Applicable for non-substitute

Maximizing $\ell(p) \Leftrightarrow$ Finding minimum s-t cut :solved efficiently by network flow [Ford, Fulkerson (1956)], [Orlin (2013)]

Maximizing $\ell(p) \Leftrightarrow$ Finding minimum s-t cut :solved efficiently by network flow

Maximizing $\ell(p) \Leftrightarrow$ Finding minimum s-t cut :solved efficiently by network flow

25

NEC Group Internal Use Only

Maximizing $\ell(p) \Leftrightarrow$ Finding minimum s-t cut :solved efficiently by network flow

© NEC Corporation 2017

Maximizing $\ell(p) \Leftrightarrow$ Finding minimum s-t cut :solved efficiently by network flow

 $\ell(p) = \text{constant} - (\text{capacity of st-cut of graph } G)$

27

NEC Group Internal Use Only

Two issues in Key idea 1

If all products are substitute goods or independent, profit can be maximized in polynomial time

This approach is still impractical because of two issues

Issue 1: General supermodular maximization is slow $O(n^5)$ $O(n^5)$ $O(n^2) \sim O(n^3)$

Issue 2: Substitute goods assumption is too restrictive Resolved by 3. supermodular relaxation Applicable for non-substitute

Non-SGP case: supermodular relaxation

∃ non-substitute goods ⇒ approximate ℓ by supermodular function

$$\ell(p) = \ell^{-}(p) + \ell^{+}(p)$$
supermodular submodular
$$\leq \ell^{-}(p) + h_{\Gamma}(p)$$
modular
supermodular
$$\Rightarrow \text{ maximized via network flow}$$

 p_1

NEC Group Internal Use Only

Non-SGP case: supermodular relaxation

Many possibilities of relaxation function Better relaxation is chosen automatically

Proposed approximation algorithm: fast and give solution with only <1% loss Existing methods

	Past data	Proposed	QPBO	Others
Computing Time		36 [s]	964 [s]	> 1day
Achieved Profit	1.40 M	1.88 M	1.25 M	Nan
Upper bound		1.90 M	1.89 M	Nan

- Real-world retail data* of a supermarket

*provided by KSP-SP Co., LTD.

- 1000 products
- Compared with SDP, QPBO, QPBOI [Rother et.al (2007)]

Conclusion

Constructed a scalable price optimization algorithm by

- Associating substitute goods with supermodularity

- Using network flow and supermodular relaxation

Future work: how to cope with the errors in objective? e.g., by robust optimization?

Orchestrating a brighter world

NEC