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An example of the cooperative game

* Given (V, ) (@ © ©) =80
V=00 @] ¥
'V(:) =15 Find a value division
v(@) =25 . x(@) =15
v(@) =30 « x(@) =35
v(@ ©) =30 e x(®) =30
v (@ O) =50

(@ ©) =50 }7 violate ‘
v(@0@® =8 @) +2@) <r@®)

‘ ‘ leave from the cooperation




An example of the cooperative game

* Given (V, ) (@ © ©) =80
V=00 @] ¥
'V(:) =15 Find a value division
v(@) =25 . x(@) =15
v(@) =30 « x(@) =30
v(@ @) =30 e x(@®) =35
v (© @) =50

No violation!
(@ @) = 50 A 4
'V(. . .) = 80 No one leaves



A goal of the cooperative game

Finding a core can be described as the following program

find «

s.t. x(S)>v(S) YOCSCV
(V) =v(V)
x(v) >0 Vo e V.

+ Avalue division z € RY if (V) = v(V)
 Avalue division is in the core if (S5) > v(S) forall S C V

Finding a core of a cooperative game is NP-complete

[> Supermodular cooperative game



Supermodular cooperative game

e Supermodular cooperative game is a cooperative game

where a characteristic function v is supermodular
A function f:2Y — R is called supermodular if

fS)+f(T) < fSNT)+ f(SUT)
forall S, T CV,and S CT
e Applications
e Induced subgraph game [Deng and Papadimitriou 1994]
e Airport game [Littlechild and Owen 1973]
e Bidder collusion game [Graham, Marshall and Richard 1990]

e Multicast tree game [Feigenbaum, Papadimitriou and
Shenker 2001]

e Bankruptcy game [O’Neill 1982]




An application of the supermodular cooperative game
Induced subgraph game

 Weighted hypergraph: G = (V, E, w)

e Characteristic function v : 2¥ - R, is the total weight of
hyperedges e € E such that every vertex in S belongs to e

Example:

1 U1
€ V(’Ul) — V(’U2) — V(’US) — U,

1 vy v(vi,v2) =0, v(va,v3) =1, v(vy,vg) =0,
eZ V(’Ul,’UQ,’Ug) — 4.




An example of induced subgraph game

In a certain K-project...

e Professor K gives bonuses depending on the number of
accepted top conference-papers

* Want to find a bonus division in the core

v(vy) = v(vg) = v(vg) =0,

v(vy,v9) = 0,v(ve,v3) = 1, v(vy,v3) = 0,

v(vy, v, v3) = 2.
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Motivation

e Property of supermodular cooperative game

e A value division called Shapley value is always in the
core

* Focus on more general solution concepts than the
core

e \WWant to find the stablest value division
e Strong least core x(S) —v(S)>e V0 C

SCV
* Weak least core x(S) —v(S) > €S| V0 C

C
SCV



Goal of our work

e Goal is to find the strong and weak least core values
of supermodular cooperative game

e The strong and weak least core values is obtained by
solving the following LP

min —e

st. x(S)>v(S)+e VO SCV
(V) =v(V)
x(v) >0 Vv eV,

where I/ is supermodular

No computational analysis about the strong and weak least core
values of supermodular cooperative game exists



/dea of our approach (1)

 Instead of solving the optimization problem,
fix ¢ > 0 and consider its feasibility

e Define a function f. : 2" — R as

(0 if S =0,
f(S)=< —v(S)—€ if0CSCYV,
(V) if §=V.
(V,v) is a supermodular game

* Solve the following feasibility problem

find x
st x(8) < f(S) WCSCV
x(V) = fe(V)

x(v) <0 YVveV.



/dea of our approach (2)

e To check the feasibility...
find x

st. x(S)< £(S) WWCSCV
= fe

x(V) = fe(V)
x(v) <0 Yv e V.

o Define pe = max{x(V) |z € P(f)}, where
P(f)={xcRY |z(S) < f(S) forall) C S CV}

* The above program is feasible iff p. > fe(V)

* Pecan be computed in polynomial time
(Frank and Tardos 1988; Naitoh and Fujishige 1992)



/dea of our approach (3)

S, T CV are crossing if SNT £ 0, S\T #0,T\ S #0,
and S UT # V.A function f :2¥ — R is called crossing
submodular if

fOS) + (1) = f(SNT) + f(SUT)

holds for any crossing S,7' C V.
< -

(0 if S =0,
fo(S)=< —v(S)—€ it C S CV, iscrossing submodular
—v(V) if §=1V.

\



/dea of our approach (4)

To compute Pe...

Theorem 1 (Fugishige 1984) Let f: 2V — R be a crossing submod-

ular function and let p = max{x(V) | x € P(f)}. Let q,r € R be defined
as

— S),
1= omin, D I9)
/ — 1’1’111’1
SEPs(V) \SI Z 15

bES
Then, we have p = min{q,r}.

By the theorem, characterize the strong and weak least
core values of the supermodular cooperative game



Induced subgraph game

1 U1
v(vy) = v(vg) = v(vg) =0,
1 V2 v(vy,v2) = 0,v(ve,v3) = 1,v(v1,v3) = 0,
Vs 1/(?)1,’02,”03)

e The strong least core value How well the hypergraph

* c(S) is clustered by the partition S
€ — minsep, 78T

P5 : the familiy of all partitions S of V' at least 2 sets
c(S) : cut weight of a partition S of V

* A value division in the strong least core
e Use the ellipsoid method to find the value division




Conclusion

e Goal:
To find the strong least core and the weak least

core of the supermodular cooperative game

e Contributions:
e Provide theoretical characterizations of the strong and
the weak least core values
e Derive explicit concise formulations of the induced
subgraph game and the airport game
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