Conjugate-Computation Variational Inference (CVI)

Mohammad Emtiyaz Khan RIKEN Center for Advanced Intelligence Project (AIP) Joint work with W Lin (AI-Stats 2017)

Uncertainty Estimation is Computationally Challenging

Bayes' rule

Exact computation of the integral is difficult.

Variational Inference

Integration to Optimization

$$\log \int p(\mathbf{y}, \mathbf{z}) d\mathbf{z}$$
$$\geq \max_{\boldsymbol{\lambda}} \mathbb{E}_{q} \left[\log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z}|\boldsymbol{\lambda})} \right]$$

High-dimensional "intractable" lower bound optimization

Stochastic Gradient Descent

$$\lambda_{t+1} = \lambda_t + \beta_t \ \frac{\partial \mathcal{L}(\lambda_t)}{\partial \lambda}$$

	SGD	CVI
General?	\checkmark	\checkmark
Scalable?	\checkmark	\checkmark
Computationally Efficient?	×	\checkmark
Modular?	×	\checkmark
Independent of parameterization?	×	\checkmark

Conjugate-Computation VI (CVI)

- Two modifications to SGD $\lambda_{t+1} = \lambda_t + \beta_t \frac{\partial \mathcal{L}(\lambda_t)}{\partial \lambda}$
 - Optimize in the mean-parameter space.
 - Change the geometry to KL divergence (natural gradients)
- Natural gradient step can be expressed as an "inference in a conjugate model".
 - Logistic Regression to Linear Regression
 - GP classification to GP Regression
 - Advanced Topic model to LDA
- In general, mean-field using message passing
- Structured inference on deep models.

Example of Non-conjugate models

Bayes' rule

$$p(\mathbf{z}|\mathbf{y}) = \frac{p(\mathbf{y}, \mathbf{z})}{\int p(\mathbf{y}, \mathbf{z}) d\mathbf{z}}$$

Gaussian Process classification (GPC)

$$\int \left[\prod_{i=1}^n p(y_i|z_i)\right] \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{K}) \, d\mathbf{z}$$

Lower Bound optimization with SGD

$$\log \int \prod_{i=1}^{n} p(y_i|z_i) \mathcal{N}(\mathbf{z}|0, \mathbf{K}) \, d\mathbf{z}$$

 $\mathcal{N}(\mathbf{z}|\mathbf{m},\mathbf{V})$

$$\prod_{i=1}^{n} p(y_i|z_i) \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{K}) \ d\mathbf{z}$$

Natural parametersMean parameters
$$\{\mathbf{m}, \mathbf{V}\}$$
 $\{\mathbf{V}^{-1}\mathbf{m}, -\frac{1}{2}\mathbf{V}^{-1}\}$ $\{\mathbf{m}, \mathbf{V} + \mathbf{m}\mathbf{m}^T\}$

SGD's performance depends on parameterization. Large number of parameters. Not modular.

Conjugate-Computation VI

Converting the non-conjugate VI to a sequence of conjugate VI by using stochastic mirror-descent method

CVI: Assumptions

- The posterior approximation is a minimal exponential family distribution $q(\mathbf{z}|\boldsymbol{\lambda}) := \exp\left\{\langle \boldsymbol{\phi}(\mathbf{z}), \boldsymbol{\lambda} \rangle - A(\boldsymbol{\lambda})\right\}$
- Natural Parameter λ
- Mean Parameter $\mu := \mathbb{E}_q[\phi(\mathbf{z})]$

CVI : Main Ideas

SGD:
$$\lambda_{t+1} = \lambda_t + \beta_t \frac{\partial \mathcal{L}_t}{\partial \lambda}$$

= $\max_{\lambda} \left\langle \lambda, \frac{\partial \mathcal{L}_t}{\partial \lambda} \right\rangle - \frac{1}{\beta} \|\lambda - \lambda_t\|^2$

Optimize w.r.t. the mean parameter Change the geometry to KL (natural gradient)

CVI:
$$\mu_{t+1} = \max_{\mu} \left\langle \mu, \frac{\partial \mathcal{L}_t}{\partial \mu} \right\rangle - \frac{1}{\beta} \mathbb{D}_{KL}[q||q_t]$$

CVI gives simpler updates

- No need to compute the gradient of the conjugate parts.
- Convert non-conjugate terms to conjugate terms

Main features of CVI

$$q_{t+1}(\mathbf{z}) \propto \left[\prod_{i=1}^{n} e^{z_i g_{1it} + z_i^2 g_{2it}} \mathcal{N}(\mathbf{z}|0, \mathbf{K})\right]^{1-\beta_t} q_t(\mathbf{z})^{\beta_t}$$

- Invariant to parameterization
- Express as a Bayesian model (comp. efficiency)
- For mean-field approximations, we can use message-passing (modularity)
- We can use "doubly" stochastic updates
- Enables structured inference in deep models!

Related Work

- 1. VMP (Winn et.al. 2005) and SVI (Hoffman et. al. 2013) do not apply to non-conjugate models.
- 2. Non-conjugate VMP (Minka et. al. 2011) does not allow stochastic gradient and lacks convergence guarantees.
- 3. EP (Minka 2001) has the same issues.
- Naive SGD based methods do not always have easy to implement updates, e.g. Black-Box Variational Inference (BBVI) (Rangnathan et.al. 2014),
- 5. Salimans and Knowles 2014 is very similar, but require computation and storage of Fisher information matrix.

Logistic Regression n>p

Logistic Regression n<p

Gaussian Process Classification

Gaussian process classification on 'USPS dataset' n = 1781

Thanks for listening!

Code available at https://github.com/emtiyaz/cvi/

Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models, (AIstats 2017) M.E. Khan and Wu Lin

I am looking for post-docs, research scientist, and interns! Visit my page at https://emtiyaz.github.io