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Single-page Summary

O We study Emerging Pattern Mining
(EPM) with statistical guarantee.

[0 EPM is also known as contrast set mining,
subgroup mining.

O We propose two-stage mining methods
that control FWER or FDR.,

0 FWER: Family-Wise Error Rate
[0 FDR: False Discovery Rate
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Emerging Pattern Mining

L Items: 1= {1,...,|1|}
1 Pattern: e< 1

[0 Emerging Pattern:
[0 e that appears frequently in D* but not in D,

<>

D] | D
{1, 2} {1, 3}
{1, 3, 4} {2, 4}

{1, 2, 3} {1, 3, 4}
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Emerging Pattern Mining

O

1

Database:

O D={(x,y):i=1,....N} where x; & I,y, ={0,1}
d D'={(xy)ED:y=1}
O D ={(xy €D:y=0j

Emerging Pattern: es.t. N/N, > a

O N=[{(xy)ED e xi
O N=[{(xy) ED re< x}
[0 a=a given threshold

Problems of Emerging Pattern Mining:

. Too many insignificant patterns are found.

Not sure whether the found patterns are just
random fluctuation of D or truly significant.
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Statistical Emerging Pattern Mining

1 Assumption: (x, y) ~i.i.d.~ IP[x, y]
0 1TP[x, y] = unknown true distribution

[1 Positive label prob.: u,=1P[y=1|e Sx]

[0 True / False Emerging Pattern:

D ‘gtrue:{eE Zl:lue>a}
O Sfalse {8 = zl:lue é CZ}

[0 SEMP: Estimate ¢ from D.
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Statistical Emerging Pattern Mining

O g,, = outputs of an algorithm

0 Family-wise error rate (FWER):
L0 FWER=IP[ |ey, N €peel = 1]

alg

[1 False discovery rate (FDR):
[0 FDR = IE[ |8alg N 8false| / |8alg| ]

We propose two-stage mining methods
that satisfy FWER = ¢ or FDR = g.
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Pattern as a hypothesis

1 Null hypothesis (¢ € ¢.,..):
O HY:u,=a

[1 Alternative hypothesis (¢ = ¢ .):

O H!':u,>a
1 P-value:
De = P[Sup(e;D+) > NI | Sup(e; D) = Ne,Hg}
N
- N€ n N.—n
= ) (n)a (1 —a)Nem,
n:N;"
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Multiple Testing Correction

1 P-value:

[0 How data is likely to be generated under H).
0 Small p-value - Rare event

1 Single Hypothesis:

[0 Rejecteifp, = ¢ = We think eis a True EPR.
[0 Control FWER (and FDR) = 4.

1 Multiple hypotheses:

[0 Probability of including “false positive” gets fairly high.
[0 Peeking p-values causes “selection bias”.

Need multiple testing correction.
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Bonferroni correction for FWER

[1 Reject e if p, = g/ m.
[0 m = # of patterns to test.

1 Control FWER at level g.
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Step-up correction for FDR

O Reject e),....eq P) SP@) = S P(m)-

O p, = the i-th smaller p-value
O e, = its corresponding pattern

Step-up
0 k= arg maXO<Z<m {p(z) ™~ c(m) mk rejeCtiOn

Level
I BH :cim)=1
O BY @ c(m)y=%m,(1/4i)

[0 Control FDR at level g,

2017/8/3

[0 under independence among hypotheses (BH)
[0 or under arbitrary correlations (BY).
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But patterns are exponentially large:--

0 m (= # of patterns to test) can be
exponentially large : 2M,

[J Naive Bonferroni / Step-up corrections
cannot find much patterns.

[0 Both corrections have g /m factor

Needs to reduce # of patterns to test.
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Existing statistical pattern mining and

our result

Existing Our result
Two-stage Mining methods

LAMP LAMP-EP | QT-LAMP-EP

Mining target SAM SEPM SEPM
Multiple Testing FWER FWER FDR
Pattern Reduction Testable Testable Quasi-Testable
Testing method || Bonferroni §| Bonferroni Step-up

01 LAMP [Terada+ 13]

[0 Proposed for statistical association mining (SAM)
[l Selects testable patterns before correction, and
1 Controls FWER.
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Two-stage Mining Method

1. Find a “appropriate” threshold =.

2. Test patterns {e: N,> 1} with
multiple testing correction.

How to choose “appropriate” 7?
We use “testability” just like LAMP!
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Testability for FWER

[ Tarone’s exclusion principle:

[0 Patterns with large p-value can be omitted
without testing; it cannot be significant.
[0 FWER can be controlled by g/ m,.., (not m).

m., = # Of “testable” patterns

0 w(N,) = a lower bound of p,
L w(N)=a"

[l eis testable if y(p,) = g/ m,
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LAMP-EP (LAMP for SEPM)

] Finding the largest testable set boils down
to finding the following threshold 7rwEer S.t.:

2p(TFVVER — 1) > 5FWER(7_FWER — 1; q,D) ; (1)
V(TrwER) < 0pwER (TFWER; ¢, D), where ---(2)
q
0 7;¢, D) = , (=Tarone
FWER(T; ¢, D) oo (D] ( )

Erp(7; D) : Frequent patterns with min-support t.

(1)...patterns of support < Tgy ggr are untestable.

(2)...patterns of support > Tpwgr are testable.



Next : Controlling FDR

[J No principled method vyet.
1 Major challenges:

1. No Tarone’s exclusion in FDR:

» We solve this by splitting the dataset into
calibration and main datasets.

2. Not sure how to select a “testable” set.

» We introduce “quasi-testablity”
(approximated testability).
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Quasi-testability for FDR

1 Step-up Correction for FDR:
O Reject ey,....ep

*  p, = thei-th smaller p-value. pu) <p@) < < pm).-

* ¢, = its corresponding pattern.

O eis testable if w(NV,) = py,

O Butpy must be unknown to avoid selection bias.

[0 eis quasi-testable if y(N,) = p

00 Instead of true p, we use an estimator p..
0 WesplitDintoD_,,and D and use D__., to estimate p,,,.
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QT-LAMP-EP for controlling FDR

[0 Find threshold value TFDR such that

Y(1rDR — 1) > OrDR(TFDR — 1; ¢, Dearib) ..(1)
Y(1pR) < OFDR(TFDR; ¢, Deariv) , where -..(2)
]% T, Dcari
5FDR(T; Q7Dcarib) — 1 ( b) (3)

C(|5FP (7-; Dcarib) |) |5FP (7-; Dcarib) |
IAC(T ; Dcarib) = # of patterns rejected if step-up method is

conducted for D, -

(1)...patterns of support < Tgpgr are untestable,

(2)...patterns of support = Tgpg are testable,
under estimated step-up rejection level of (3). 18
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Computer Simulations

[1 Statistical powers of LAMP-EP and QT-
LAMP-EP are compared.

[0 LAMP-EP used the entire dataset for
testing.

[0 QT-LAMP-EP used 20% of D as D
obtaining p.,, and 80% as D

carib f
for testing.

main
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FWER/FDR in synthetic dataset.

[0 Synthetic patterns, a = 0.5,q = 0.05.

[0 True SEPs: subset of {1, ...,10}: u, = 0.7

[0 Other patterns: subset of {11, ...,100}, u, = 0.5.
O |D| = 10°, 10% of patterns are true SEPs.

Results:
algorithms # of TDs | # of FDs FDR FWER
EPM 516.50 | 3848.61 0.88 1.00
LAMP-EP 166.32 0.01 6.02e-05
QT-LAMP-EP (BH) | 230.87 4.10 0.017 0.99
QT-LAMP-EP (BY) | 184.10 0.40 2.13e-03 | 0.32
01753 o Controlled = ¢ 20



Number of discoveries in a

classification (mushroom) dataset

1 Controlling FDR yields more patterns
than FWER.

T

O *—* QT-LAMP-EP(BH)
@ E;) A4 QT-LAMP-EP(BY)
© 3 e LAMP-EP
=3

S

5 0.6 0.7 0.8 0.9
(1

- Similar results hold for other 7 datasets.
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Conclusion

[0 We formulated statistical emerging
pattern mining.

[0 We propose two-stage mining methods:

1 LAMP-EP controls FWER.
1 QT-LAMP-EP controls FDR.

[0 We empirically verified their statistical power.

Thanks!
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Paper and software are available.

Paper:

http://www.tkl.iis.u-tokyo.ac.jp/~jkomiyama/pdf/kdd-
statistical-emerging.pdf

Software:
https://github.com/jkomiyama/qtlamp

Contact:

Junpei Komiyama
junpei@komiyama.info
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