Statistical Emerging Pattern Mining with Multiple Testing Correction

Junpei Komiyama¹, <u>Masakazu Ishihata²</u>, Hiroki Arimura², Takashi Nishibayashi³, Shin-Ichi Minato²

- 1. U-Tokyo
- 2. Hokkaido Univ.
- 3. VOYAGE GROUP Inc.

(to appear in KDD2017 research track)

Single-page Summary

- We study Emerging Pattern Mining (EPM) with statistical guarantee.
 - EPM is also known as contrast set mining, subgroup mining.
- We propose two-stage mining methods that control FWER or FDR.
 - FWER: Family-Wise Error RateFDR: False Discovery Rate

Emerging Pattern Mining

Items:
$$I = \{1, ..., |I|\}$$

- **D** Pattern: $e \subseteq I$
- Emerging Pattern:
 - \square e that appears frequently in D^+ but not in D^- .

Emerging Pattern Mining

Database:

D = {
$$(x_i, y_i) : i = 1, ..., N$$
 } where $x_i \subseteq I, y_i \in \{0, 1\}$
D⁺ = { $(x, y) \in D : y = 1$ }
D⁻ = { $(x, y) \in D : y = 0$ }

D Emerging Pattern: e s.t. $N_e^+/N_e^- > a$

 $\square \quad N_e^+ = |\{ (x, y) \in D^+ : e \subseteq x \}|$

$$\square \quad N_e^{-} = |\{ (x, y) \in D^- : e \subseteq x \}|$$

 \Box *a* = a given threshold

- Problems of Emerging Pattern Mining:
- 1. Too many *insignificant* patterns are found.
- 2. Not sure whether the found patterns are just random fluctuation of D or truly significant. 2017/8/3 ERATO感謝祭

Statistical Emerging Pattern Mining

- □ Assumption: $(x, y) \sim i.i.d. \sim IP[x, y]$ □ IP[x, y] = unknown true distribution
- **D** Positive label prob.: $\mu_e = \operatorname{IP}[y = 1 | e \subseteq x]$
- □ True / False Emerging Pattern:

SEMP: Estimate ε_{true} from *D*.

Statistical Emerging Pattern Mining

$$\Box$$
 $\varepsilon_{alg} = outputs of an algorithm$

- □ Family-wise error rate (FWER): □ FWER = IP[$|\varepsilon_{alg} \cap \varepsilon_{false}| \ge 1$]
- False discovery rate (FDR):
 - $\Box \quad FDR = IE \left[\left| \epsilon_{alg} \cap \epsilon_{false} \right| / \left| \epsilon_{alg} \right| \right]$
- We propose two-stage mining methods that satisfy $FWER \leq q$ or $FDR \leq q$.

Pattern as a hypothesis

□ Null hypothesis (
$$e \in \varepsilon_{\text{false}}$$
):
□ H_e^0 : $\mu_e = a$

- □ Alternative hypothesis ($e \in \varepsilon_{true}$): □ $H_e^1: \mu_e > a$
- □ P-value: $p_e = \mathbb{P}\left[\operatorname{Sup}\left(e; \mathcal{D}^+\right) \ge N_e^+ \mid \operatorname{Sup}(e; \mathcal{D}) = N_e, H_e^0\right]$ $= \sum_{n=N_e^+}^{N_e} \binom{N_e}{n} a^n (1-a)^{N_e-n}.$

Multiple Testing Correction

P-value:

- \square How data is likely to be generated under H_e^0 .
- □ Small p-value \rightarrow Rare event
- □ Single Hypothesis:
 - **D** Reject *e* if $p_e \leq q \rightarrow$ We think *e* is a True EP.
 - **Control FWER (and FDR)** $\leq q$.
- Multiple hypotheses:
 - Probability of including "false positive" gets fairly high.
 - Peeking p-values causes "selection bias".

Need multiple testing correction.

Bonferroni correction for FWER

- **D** Reject *e* if $p_e \leq q / m$.
 - \square *m* = # of patterns to test.
- \square Control FWER at level q.

Step-up correction for FDR

■ Reject
$$e_{(1)}, \dots, e_{(k)}$$

 $p_{(1)} \leq p_{(2)} \leq \dots \leq p_{(m)}$
 $p_{(i)}$ = the i-th smaller p-value
 $e_{(i)}$ = its corresponding pattern
 $k = \arg \max_{0 \leq i \leq m} \left\{ p_{(i)} \leq \frac{q}{c(m)} \frac{i}{m} \right\}$
Step-up
rejection
Level
 $k = \operatorname{BH} : c(m) = 1$
 $\operatorname{BY} : c(m) = \Sigma_{i=1}^{m} (1 / i)$

\Box Control FDR at level q,

- under independence among hypotheses (BH)
- or under arbitrary correlations (BY).

But patterns are exponentially large…

 $\square m (= \# \text{ of patterns to test}) \text{ can be}$ exponentially large : $2^{|I|}$.

Naïve Bonferroni / Step-up corrections cannot find much patterns.

D Both corrections have q / m factor

Needs to reduce # of patterns to test.

Existing statistical pattern mining and our result

	Existing	Our result Two-stage Mining methods		
	LAMP	LAMP-EP	QT-LAMP-EP	
Mining target	SAM	SEPM	SEPM	
Multiple Testing	FWER	FWER	FDR	
Pattern Reduction	Testable	Testable	Quasi-Testable	
Testing method	Bonferroni	Bonferroni	Step-up	

□ LAMP [Terada+ 13]

- Proposed for statistical association mining (SAM)
- Selects testable patterns before correction, and
- Controls FWER.

Two-stage Mining Method

1. Find a "appropriate" threshold τ .

2. Test patterns $\{e : N_e > \tau\}$ with multiple testing correction.

How to choose "appropriate" τ? We use "testability" just like LAMP!

Testability for FWER

□ Tarone's exclusion principle:

Patterns with large p-value can be omitted without testing; it cannot be significant.

G FWER can be controlled by q / m_{test} (not m).

•
$$m_{\text{test}} = \# \text{ of "testable" patterns}$$

$$\psi(N_e) = a \text{ lower bound of } p_e$$
$$\psi(N) = a^N$$

 \Box *e* is testable if $\psi(p_e) \leq q / m_{\text{test}}$

LAMP-EP (LAMP for SEPM)

- □ Finding the largest testable set boils down to finding the following threshold \(\tau_{\mathbf{FWER}}\) s.t.:
 - $\psi(\tau_{\text{FWER}} 1) > \delta_{\text{FWER}}(\tau_{\text{FWER}} 1; q, \mathcal{D}), \quad \dots(1)$ $\psi(\tau_{\text{FWER}}) \leq \delta_{\text{FWER}}(\tau_{\text{FWER}}; q, \mathcal{D}), \text{ where } \dots(2)$ $\delta_{\text{FWER}}(\tau; q, \mathcal{D}) = \frac{q}{|\mathcal{E}_{\text{FP}}(\tau; \mathcal{D})|}, \quad (=\text{Tarone})$

 $\mathcal{E}_{\mathrm{FP}}(\tau; \mathcal{D})$: Frequent patterns with min-support τ .

(1)...patterns of support $< \tau_{FWER}$ are untestable. (2)...patterns of support $\geq \tau_{FWER}$ are testable. BRATORNIAS

Next : Controlling FDR

- □ No principled method yet.
- Major challenges:
- 1. No Tarone's exclusion in FDR:
 - We solve this by splitting the dataset into calibration and main datasets.
- 2. Not sure how to select a "testable" set.
 - We introduce "quasi-testablity" (approximated testability).

Quasi-testability for FDR

□ Step-up Correction for FDR:

- **Reject** $e_{(1)}, \dots, e_{(k)}$
 - $p_{(i)}$ = the i-th smaller p-value. $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.
 - $e_{(i)}$ = its corresponding pattern.

•
$$k = \arg \max_{0 \le i \le m} \left\{ p_{(i)} \le \frac{q}{c(m)} \frac{i}{m} \right\}$$

• *e* is testable if $\psi(N_e) \leq p_{(k)}$

But $p_{(k)}$ must be unknown to avoid selection bias.

 \Box e is quasi-testable if $\psi(N_e) \leq p_{est}$

I Instead of true $p_{(k)}$, we use an estimator p_{est} .

□ We split *D* into D_{main} and D_{carib} , and use D_{carib} to estimate p_{est} .

2017/8/3

QT-LAMP-EP for controlling FDR

\Box Find threshold value $\tau_{\rm FDR}$ such that

$$\psi(\tau_{\rm FDR} - 1) > \delta_{\rm FDR}(\tau_{\rm FDR} - 1; q, \mathcal{D}_{\rm carib}) \qquad \dots (1)$$

$$\psi(\tau_{\rm FDR}) \leq \delta_{\rm FDR}(\tau_{\rm FDR}; q, \mathcal{D}_{\rm carib}) \quad , \text{ where } \dots (2)$$

$$f_{\rm FDR}(\tau; q, \mathcal{D}_{\rm carib}) = \frac{q}{c(|\mathcal{E}_{\rm FP}(\tau; \mathcal{D}_{\rm carib})|)} \frac{\hat{k}(\tau; \mathcal{D}_{\rm carib})}{|\mathcal{E}_{\rm FP}(\tau; \mathcal{D}_{\rm carib})|} \dots (3)$$

$$(\tau; \mathcal{D}_{\rm carib}) = \# \text{ of patterns rejected if step-up method is}$$

conducted for \mathcal{D}_{carib} .

 δ

 \hat{k}

(1)...patterns of support $< \tau_{\text{FDR}}$ are untestable, (2)...patterns of support $\geq \tau_{\text{FDR}}$ are testable, under estimated step-up rejection level of (3).

Computer Simulations

Statistical powers of LAMP-EP and QT-LAMP-EP are compared.

LAMP-EP used the entire dataset for testing.

□ QT-LAMP-EP used 20% of *D* as D_{carib} for obtaining p_{est} , and 80% as D_{main} for testing.

FWER/FDR in synthetic dataset.

- Synthetic patterns, a = 0.5, q = 0.05.
- True SEPs: subset of $\{1, \dots, 10\}$: $\mu_e = 0.7$
- Other patterns: subset of {11, ..., 100}, µ_e = 0.5.
 |D| = 10⁵, 10% of patterns are true SEPs.

Results:

algorithms	# of TDs	# of FDs	FDR	FWER
EPM	516.50	3848.61	0.88	1.00
LAMP-EP	166.32	0.01	6.02e-05	0.01
QT-LAMP-EP (BH)	230.87	4.10	0.017	0.99
QT-LAMP-EP (BY)	184.10	0.40	2.13e-03	0.32

Controlled $\leq q$

Number of discoveries in a classification (mushroom) dataset

Controlling FDR yields more patterns than FWER.

Similar results hold for other 7 datasets.

Conclusion

We formulated statistical emerging pattern mining.

□ We propose **two-stage mining methods**:

- LAMP-EP controls FWER.
- □ QT-LAMP-EP controls **FDR**.

We empirically verified their statistical power.

Thanks!

Contact us

Paper and software are available.

Paper: http://www.tkl.iis.u-tokyo.ac.jp/~jkomiyama/pdf/kddstatistical-emerging.pdf

Software: https://github.com/jkomiyama/qtlamp

Contact: Junpei Komiyama junpei@komiyama.info