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Multi-view anomaly 
• Instances that have inconsistent views 
• Application 

– information disparity management 
• find documents that contain different information 

across multilingual Wikipedia documents  
– malicious insider detection 
– purchase behavior analysis 

• find movies inconsistently purchased by users 
based on the genre (animation by purchased by 
grown-ups) 
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Single-view/multi-view anomaly 
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• single-view anomaly is an instance that does not 
conform to expected behavior 

• S is single-view anomaly, but not multi-view anomaly 
• M is not single-view anomaly, but multi-view 

anomaly 
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Existing method: HOAD (1) 
• HOrizontal Anomaly Detection (HOAD) 

– A Spectral Framework for Detecting Inconsistency 
across Multi-source Object Relationships, Gao et. 
al. ICDM 2011 

• Step1: soft clustering two views together with 
the constraint that an instance should be 
assigned to the same cluster 
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Existing method: HOAD (2) 

• Step2: quantify the difference between the 
two clustering solutions 
 

• weak points 
– anomalous instances also have the constraint to 

be assigned to the same cluster 
– require hyper-parameter tuning (e.g. weight for 

the constraint) 
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Proposed model 
• Normal (non-anomalous) instance 

– all views are generated from a single latent vector  
• Anomaly 

– different views are generated from different latent 
vectors  
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Proposed model 
• Each instance has potentially a countably infinite number 

of latent vectors 
• Each view of an instance is generated depending on a 

view-specific projection matrix and a latent vector 
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Proposed probabilistic model 

• By using Dirichlet processes prior for each instance,  the number of 
latent vectors is automatically determined from the given data 
– if views are consistent, they are clustered; otherwise, they 

need different latent vectors 
• By using view-dependent projection matrices, we can handle 

different properties across different views 

𝑝 𝒙𝑛𝑛 𝒛𝑛,𝑾𝑛 ,𝜽𝑛,𝛼 = �𝜃𝑛𝑛𝑁(𝒙𝑛𝑛|𝑾𝑛𝒛𝑛𝑛 ,𝛼−1𝑰)
∞

𝑛=1
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indicator function 

Anomaly score:  
probability that the 
instance uses more than 
one latent vector 
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Proposed model 
• clustering views for each instance in the latent space 
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• Proposed model 
– 𝑝 𝒙𝑛𝑛 𝒛𝑛,𝑾𝑛 ,𝜽𝑛,𝛼 = ∑ 𝜃𝑛𝑁(𝒙𝑛𝑛|𝑾𝑛𝒛𝑛𝑛 ,𝛼−1𝑰)∞

𝑛=1  
 
 

• Probabilistic PCA 
– 𝑝 𝒙𝑛𝑛 𝒁,𝑾 = 𝑁(𝒙𝑛𝑛|𝑾𝒛𝑛𝑛 ,𝛼−1𝑰) 
 

• Probabilistic CCA 
– 𝑝 𝒙𝑛𝑛 𝒁,𝑾 = 𝑁(𝒙𝑛𝑛|𝑾𝑛𝒛𝑛𝑛 ,𝚺) 
 

• Infinite Gaussian mixture 
– 𝑝 𝒙𝑛𝑛 𝝁,𝜽 = ∑ 𝜃𝑛𝑁(𝒙𝑛𝑛|𝝁𝑛 ,𝛼−1𝑰)∞

𝑛=1  
 
 

 

Relation with other latent variable models 



17 

Generative process 
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Inference based on stochastic EM 
• Analytically integrate out the latent vectors Z, mixture 

weights Θ, precision 𝛼 
• E-step: collapsed Gibbs sampling of latent vector 

assignment s for each view of each instance ℓ = (𝑛,𝑑)  
 

 
• M-step: maximum joint likelihood estimation of 

projection matrices W 
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Experiments 
• Data 

– 11 data sets from LIBSVM data 
– generated multiple views by randomly splitting 

the features  
– anomalies were added by swapping views of two 

randomly selected instances 
• Comparing methods 

– PCCA: probabilistic canonical correlation analysis 
– HOAD: horizontal anomaly detection 
– CC: consensus clustering based anomaly detection 
– OCSVM: one-class support vector machine 
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Multi-view anomaly detection with 
different anomaly rate 

The proposed model achieved the best with 8 of the 11 data sets 
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Multi-view anomaly detection with 
different latent dimensionality 
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MovieLens data analysis 
instance: movie,  view1: user list who rated,  view2: genre  

‘The Full Monty’ and ‘Liar Liar’ were ‘Comedy’ genre. They are rated by not 
only users who likes ‘Comedy’, but also who likes ‘Romance’ and ‘Action-
Thriller’.  
‘The Professional’ was anomaly because it was rated by two different user 
groups, where a group prefers ‘Romance’ and the other prefers ‘Action’.  
Since ‘Star Trek’ series are typical Sci-Fi and liked by specific users, its 
anomaly score was low. 

high anomaly score movies low anomaly score movies 
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Conclusion 
• We proposed a generative model approach for multi-

view anomaly detection, which finds instances that 
have inconsistent views.  

• In the experiments, we confirmed that the proposed 
model could perform much better than existing 
methods for detecting multi-view anomalies 

• Future work 
– nonlinear projection using Gaussian processes or 

deep neural nets 
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