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 STOC, FOCS, SODA: 理論計算機科学のトップ会議 
 また暗号(Crypto)，プライバシー(Privacy), 量子計算量でもベストな結
果が発表される！ 

 しかし実際は，，， 「難関」数学！ 
 誰も実装はしない。実装にはほぼ意味がない。おそらく興味すらない。 
 → 理論家の論文をそのまま実装してはだめ 
 近年のトレンド： 離散数学，解析，確率，整数論, 幾何，代数などか
ら，超「難関」数学の応用と拡張が中心 

 数学のビッグネームの参入： Terry Tao, Tim Gowers, Laszlo Lovasz, 
Lex Schrijver, Noga Alon, Endre Szemeredi, Assaf Naor, Yuval Peres, 
Jeff Cheeger, Bruce Kelner…（フィルーズ賞，アーベル賞，あるいは
アーベル賞候補者） 



理論の世界： ＳＴＯＣ，ＦＯＣＳ，ＳＯＤＡ世界 

チューリング賞受賞者や，ネバンリンナ賞受賞が， 
大量にいる世界 ＋ 未来のチューリング賞受賞候補が 
たくさんいる世界（おそらくチューリング賞を最も輩出している分野） 
過去３０年のチューリング賞受賞者 
 
Richard Karp (1985), Hopcroft and Tarjan (1986),  
Juris Hartmanis and Richard E. Stearns(1993),  
Mauel Blum(1995), Andrew Yao(2000), Rivest, Shamir,  
Adleman(2002), Leslie Valiant(2010), Micali, Goldwasser(2012) 
 
 
ネバンリンナ賞 
Tarjan(82), Valiant(86), Razborov(90), Wigderson(94), Shor(98) 
Sudan(02), Kleinberg(06), Spielman(10), Khot(14) 
 
ユダヤ人が半数以上！ 
Ｎｏｎ－ＵＳ, Non-Israel： Mikkel Thorup, Ken-ichi Kawarabayashi 
Under 40: Venkastesan Guruswami, Anupam Gupta 
                 Ken-ichi Kawarabayashi 



理論研究の世界： ＳＴＯＣ，ＦＯＣＳ，ＳＯＤＡ世界 
ここで生き残るのは結構つらい！ 
→ 理論屋さんだけでやっていくのは結構つらいよ！ 
→ でも他の分野でも活躍できる！ 

Ａｌｏｎ： アーベル賞を10年以内にとりそうな数学者 
Ｌｅｉｇｈｔｏｎ： Akamaiの創始者 
Ｋｌｅｉｎｂｅｒｇ．．．   
Ｐｉｏｔｒ Ｉｎｄｙｋ： ＩＣＭＬ‘１５ ベストペーパー 
Ragahavan: Former Y! research director 
S. Muthukrishnan: Databaseでもビッグネーム 
Motowani： Brin, PageのPDメンター 
C. Dvorak： Privacyでの超有名人 
その他： 理論研究者が他分野で、論文をたくさん発表！ 
 

でも… 数学なのに、評価される理由 
１．実用面での貢献をした研究者も多い 
２．理論が強い学生は、常に優良物件！ 
３．他分野にも影響を与える研究者も多い！ 



1. Ken-ichi Kawarabayashi, Mikkel Thorup 
Deterministic Global Minimum Cut of a Simple Graph in Near-linear Time 
 
2. Ken-ichi Kawarabayashi and Stephan Kreutzer, 
The Directed Grid Theorem 
 
3. Ken-ichi Kawarabayashi and Anastasios(Tasos) Sidiropoulos 
Beyond the Euler Characteristic: Approximating the Genus of General Graphs 
  
90/323.. 





STOC‘１５ Result: Edge Connectivity 
Graph Cut： One of the most famous problem 
Partition G into (A,B) such that # of edges  
between A and B is as small as possible. 
 
G: n vertices and m edges. 
K: cut size 
 
Race by many ``giant’’ researchers in theory! 
Ford and Fulkerson’56        O(mn2)    ←     Founder of Operation Research！ 
Even and Tarjan’75             O(nm1.5) ←      Turing prize winner 
Karzanov and Timofeev’86  O(n3)   ←     Russian researchers 
Hao and Orlin’92                 O(nm log(n2/m))  Deterministic 
Ibaraki and Nagamochi’92   O(nm+n2log n)     Deterministic 
Gabow’93                             O(km)                Deterministic (for simple graphs) 
Karger’94                            O(mn0.5)            (Randomize, Monte Carlo, Random Contraction) 
Karger and Stein’96            O(n2 log3 m)      (Randomize, Monte Carlo) 
Karger’99                            O(m log3 n)        (Randomize, Monte Carlo, Tree Packing) 
KK and Thorup(STOC’15)     O(m log１０ n)         Deterministic! (for simple graphs)  



Min-Max Theorem(Ford and Fulkerson) 
Given s and t,  
Max # of edge-disjoint paths (flows)  
= Min # of edge cut s and t 
 

Race by many ``giant’’ researchers in theory! 
Ford and Fulkerson’56        O(mn2)    ←     Founder of Operation Research！ 
Even and Tarjan’75             O(nm1.5) ←      Turing prize winner 
Karzanov and Timofeev’86  O(n3)   ←     Russian researchers 
Hao and Orlin’92                 O(nm log(n2/m))  Deterministic 
Ibaraki and Nagamochi’92   O(nm+n2log n)     Deterministic 
Gabow’93                             O(km)                Deterministic (for simple graphs) 
Karger’94                            O(mn0.5)            (Randomize, Monte Carlo, Random Contraction) 
Karger and Stein’96            O(n2 log3 m)      (Randomize, Monte Carlo) 
Karger’99                            O(m log3 n)        (Randomize, Monte Carlo, Tree Packing) 
KK and Thorup(STOC’15)     O(m log１０ n)         Deterministic! (for simple graphs) 

s 
t 



 Monte Carlo Algorithm: 
 Guarantee the time complexity, and with high probability, 
the answer is correct.  
 
 Kager’s mincut: NO WAY to check that the cut is min…  
 
 Las Vegas Algorithm:  
 Guarantee the correctness, but with small probability, 
time complexity takes forever..  



Key Observation 1:  
Let C be a ``minimum’’ cut (of order at most k).  Either  
1. One side is trivial (note that min degree is at least k), or 
2. Both sides contain at least k-1 vertices..  
 
Our luck: 
Can assume that k > log3 m (otherwise, we can get a min cut algorithm with 
running time O(km) by Gabow, and done.)  
 

 
In 2, we get a ``sparse’’ cut (i.e., low conductance cut)!  
Log n is a ``magic’’ number…    → KEY IDEA! Keep applying sparsest cut! 
 



 Observation 2:  
Q: a subgraph s.t. each vertex in Q has degree at least k/2 in Q. If no sparsest 
cut of conductance k/4 in Q →  Q is contractible  
(preserving all min nontrivial cuts)!    
 
Note: k > log3 n. So conductance is small.. 
 
 
The idea:  
Find contractible subgraphs Q’ such that after the contraction, the graph has at 
most m/k edges (but all nontrivial cuts are there). 
→ By Gabow’s, we get an O(m) algorithm.  
 
How to find contractible subgraphs? Repeatedly cutting sparsest cuts! 
→ When we stuck, we get ‘’contractible’’ subgraphs! 
 



 PageRank! (starting from one vertex) &Sparsest cut! 
   (Andersson, Chung, Lang) 

 
Key Observation:  
Let G be a simple graph with min degree k. If min-cut W is not trivial, then  # of cut 
edges of W is at most factor 2/k of # of edges in components. 
  
 → we can use PageRank  
      to find a sparsest cut W’ 
      (with error factor log n << k)!  
→  # of cut edges for W’ is  
   at most factor (2 log n/k) of  
   # of edges in W’ in O(m)! 
   k > log5m 



 

Big Side G-W 

Small side W 

If we can ``correctly’’ guess a vertex v in 
W and start PageRank from v, we can get a 
sparse cut of conductance o(1/log n).   
            More we can say…. 

Min cut 



Big Side G-W 
Small side W 

If u gets ‘’small (< 1/m),  
Then we can find a sparse cut! 

Min cut 



Small side W 



Small side W 

Fix PageRank score after the cut of W 
  → Gauss-Southwell (KDD’15)! 
 → Time complexity: O(|W|) 

Min cut 



 If we cannot find low-conductance (sparse) cut in W, then W is 
contractible.  

 The point:  
 Only apply O(log n) iterations to the small side W →  average degree is 
k – O(log2 n) >> k/2... 

 
 Can do each ``small’’ component separately..  
  → spend only O(m) in total. Then we can find contractible subgraphs! 
 
In the end, we have a graph with O(m/k) edges. 
 
Well, cheating….. 
 
 



Algorithmic Digraph Structure Theory 

The Directed Grid Theorem 

Ken-ichi Kawarabayashi, NII, Tokyo 
Stephan Kreutzer, TU Berlin 
 
（ICALPのほうが詳しい） 

Stephan Kreutzer – TU Berlin 



planar 

lin. local tree width 

excluded minors 

trees tree width 

all graph classes Undirected Graphs 

…
 

directed tree 
width 

Directed Graphs 

The Grid Theorem 



The main motivation of this talk 
 
 

                         WHAT ABOUT DIGRAPHS?    
 
 
                    Can we do the same thing?  
 
 
Warning:  Not really known much.  
Purposes of this talk: report some progress  
                                  future direction 
                                   and many open questions 



 (T, W) is a tree decomposition of G = (V, E) 
 
 
 
 

 T is a tree,  W 
                    , and every edge has both ends in some Wt 

 

 If t lies one the path in T between t' and t'', then 

Treewidth 

VW
TVt

t =
∈


)(

)}(|{ TVtVWt ∈⊆=

''' ttt WWW ∩⊆

T G 

Ｔree-width: 
How close to a Tree 
Width=1  ⇔  Tree 



 (T, W) is a tree decomposition of G = (V, E) 
 
 
 
 

 width of (T, W)  := maxt  |Wt| - 1 
 

 treewidth of G  := min. width over all tree decompositions 

 T is a tree,  W 
                    , and every edge has both ends in some Wt 

 

 If t lies one the path in T between t' and t'', then 

Treewidth 

VW
TVt

t =
∈


)(

)}(|{ TVtVWt ∈⊆=

treewidth = 2  

T G 

''' ttt WWW ∩⊆

Ｔree-width: 
How close to a Tree 
Width=1  ⇔  Tree 



Importance of Tree-width 
 (Algorithm) Many hard NP-hard problems can be solved  
    in linear time. 
 (Algorithm) Fixed parameter-tractability 
 (Graph Theory) Great tools in Structure Graph Theory 
 (Logic) Courcelle’s theorem: every graph property that is definable in 

MSO2 can be decided in linear time for graphs of bounded tree-width! 
 (General) AI, Database, Data mining, Social Network, Programming 

Language etc. 
 
 



Treewidth and Grid minor (most important result in treewidth..) 

 f(r) =2       ,    f(r) =Ω(r2 log r) 
 

 

 

Thm (Robertson-Seymour, 1986)  The grid minor theorem 
For any r, there exists an integer f(r)   s.t.  for any graph G, either 

• treewidth of G is  ≤  f(r) 
• G has an  r×r -grid-minor  

O(r5) (Robertson-Seymour-Thomas [1994],  Diestel et al. [1999]) 

Known results 

G contains an H-minor  -> H can be obtained from G by deleting edges and contracting edges 

Tree-width r 



Treewidth and Grid minor(most important result in treewidth..) 

 f(r) =2       ,    f(r) =Ω(r2 log r) 
 

 G : planar                   f(r) = O(r)  
 G : bounded genus     f(r) = O(r) 
 G : H-minor-free        f(r) = cH・r 
 G : K3,k-minor-free      f(r) = 204k・r 

 

 

 

 

For any r, there exists an integer f(r)   s.t.  for any graph G, either 
• treewidth of G is  ≤  f(r) 
• G has an  r×r -grid-minor 

O(r5) (Robertson-Seymour-Thomas [1994],  Diestel et al. [1999]) 

(Robertson-Seymour-Thomas [1994]) 

(Demaine, Fomin, Hajiaghayi, Thilikos, [2005]) 

(Demaine-Hajiaghayi [2008]) 

(Demaine-Hajiaghayi –KK [2009]) 

Known results 

Thm (Robertson-Seymour, 1986)  The grid minor theorem 



Treewidth and Grid minor(most important result in treewidth..) 

 f(r) =2       ,    f(r) =Ω(r2 log r) 
 

 G : H-minor-free        f(r) = |V(H)|O(|E(H)|)・r (Kawarabayashi-Kobayashi [2012]) 
 

 G : general                  f(r) = 2                 (Kawarabayashi-Kobayashi, Leaf-Seymour[2012])  
 G:  general                  f(r) = rO(1)                    (Chekuri-Chuzoy[2013])         

 

 

For any r, there exists an integer f(r)   s.t.  for any graph G, either 
• treewidth of G is  ≤  f(r) 
• G has an  r×r -grid-minor 

O(r5) (Robertson-Seymour-Thomas [1994],  Diestel et al. [1999]) 

Known results 

O(r2 log r) 

Thm (Robertson-Seymour, 1986)  The grid minor theorem 

Importance of the grid minor theorem: 
1. Fixed Parameter Tractability(FPT) ,  
   bidimetionality(Large vertex cover..) 
2. Logic (FOL etc..) 
3. Combinatorial Optimization(Routing..) 
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What about digraphs? 
Seems much harder! 
Q.1 What is ``tree-width’’ for digraphs? 
Q.2 What is ``minor’’ for digraphs?  
       What is grid minor for digraphs?  
 
 

What should be ``grid? 
1. Many cycles! 
2. Globally connected 



Tree-width for undirected graphs 
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Q1. What is Directed Tree-Width? 

 Defined analogous to undirected tree width but based 
on strong separators 
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Directed Tree Width 

(Reed’97) 

Directed tree-width: 
How close to a DAG 
(directed acyclic graph) 
Width=1  ⇔ DAG 



CONJECTURE (Alon, Reed, Robertson, Seymour, Thomas, 1995) 
 
There is a function f  such that every digraph of tree-width  
at least f(k) has a cylindrical k ×k  grid minor. 
 

Directed Grid should be 
1. Many cycles 
2. Globally connected 
3. Directed tree-width  
     at least k 

 

Minor: contract an edge if  
only outgoing of tail or 
only incoming of head. 



CONJECTURE (Alon, Reed, Robertson, Seymour, Thomas, 1995) 
 
There is a function f  such that every digraph of tree-width  
at least f(k) has a cylindrical k ×k  grid minor. 
 

History:  
True for planar graphs  
(Johnson, Robertson, Seymour, Thomas, 99) 
True for minor-closed 
(KK& Kreutzer, SODA’14) 
True if ``half-integral’’ 
(KK&Kreuzer’STOC’14) 
General case?? -> This is our main result! 



Main Theorem (KK and Kreutzer, STOC 2015) 
 
There is a function f  such that every 
digraph of tree-width at least f(k) has a cylindrical k ×k 
grid minor.      Proof > 50 pages…. 
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Beyond the Euler genus: 
Approximating the genus of 
general graphs 

Ken-ichi Kawarabayashi 
NII, Tokyo 
Joint work with Anastasios(Tasos) Sidiropoulos 
To appear in STOC’15 



Surface 

 By a surface, we mean a compact 2-dimensional 
manifold.  

 We consider plane with crosscaps or handles. 
 Plane + crosscap: Projective planar. 
 Plane + handle : Torus 
 Plane + two crosscaps : Klein bottle 



Torus 



Klein Bottle 



Embedding into a surface 
 Embed graph in a surface with no edge crossings. 
 Minor-closed. 
 Euler genus of complete graphs and complete 

bipartite graphs are known (Heawood 1890!) 
 But very little about other graphs…. 

 
 Problem(One of original Garey-Johnson) 
What is the genus of a given graph? Can you 
compute? 
 NP-complete to determine Euler genus of a given 

graph. (Thomassen, 1988) 



Embedding into a surface 
 For fixed Euler genus g, O(ng) algorithm. (Filotti, 

Miller and Reif, 1990) 
 

 O(n3) algorithm. (Robertson and Seymour, 1995) 
 

 Linear time algorithm. (Mohar, 1997) 
 

 Mohar’s algorithm gives either an embedding in 
the surface of Euler genus k or an obstruction 
(One of minimal forbidden minors.) 



New Algorithm(FOCS’08) 

 With B. Reed and B. Mohar 
 We get another linear time algorithm. 
 Better in the following sense: 

 
1. Proof < 25 pages (Mohar’s proof > 100 pages) 
2. Hidden constant is better.  But 2g 



Approximation Algorithm 
 No way to compute if g is bigger than log n.  

 
 NP-hard to decide g (Thomassen).  

 
 Trivial approximation: O(n/g).  
 Euler Formula: |V|-|E|+|F|=2-g → O(n/g)-approximation.  

 
 Essentially nothing is known between NP-hardness and Trivial bound! 
 No hardness result is known! (O(1) is NOT ruled out) 



Our main result: First ``non-trivial’’ approximation 
Theorem: Given a graph G and an integer g, in P, we can either  
1. Correctly determine that G cannot be embedded in a surface 

of Euler genus g, or  
2. Output an embedding of G in a surface of Euler genus g200 

log150 n. 
 
Corollary. O(n1-c)-approximation algorithm to compute Euler 
genus  
For some small (but absolute constant) c.   
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