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Introduction

The effects of global warming have been well
documented, especially in recent years. As a result,
the majority of countries have made a commit-
ment to reducing their greenhouse gas emissions,
including many whose national governments have
made ambitious and unrealistic promises. Meeting
these targets will require a coordinated effort from
policymakers, businesses, and large industries, and
numerous creative solutions will need to be imple-
mented to achieve the desired goal. One potential
solution is based on discrete mathematics, where
combinatorial and graph-theoretic techniques are
applied to scheduling optimization, leading to
economic and environmental benefits.

There are many practical roles for mathemat-
ically optimal schedules that reduce total travel
distance, including supply-chain logistics and air-
plane flight assignments. In this paper we describe
how to optimize the regular-season schedule for

Graph Theory and
Sports Scheduling

Richard Hoshino and Ken-ichi Kawarabayashi

converted into a much simpler shortest-path prob-
lem. As we describe in this paper, the answer
to this question is affirmative. Consequently, we
have succeeded in generating the distance-optimal
NPB regular-season schedule which retains all of
the league's constraints that ensure competitive
balance while reducing the total travel distance by
24.3%, or nearly 70,000 kilometers, as compared
to the 2010 season schedule.

To solve the NPB scheduling problem, we have
generalized and extended the Traveling Tourna-
ment Problem (TTP), a well-known topic in sports
scheduling [10]. Our research has produced five
papers, [4], [5], [6], [7], [8], describing the theo-
retical aspects of the problem, providing various
heuristics for generating distance-optimal intra-
league and inter-league schedules, and applying
the results to optimize the NPB league schedule.

Shortly after introducing the Traveling Tourna-
ment Problem [2], Easton et al. formed a consulting
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10 The ZU1U season scheaule.

To solve the NPB scheduling problem, we have
generalized and extended the Traveling Tourna-
ment Problem (TTP), a well-known topic in sports
scheduling [10]. Our research has produced five
papers, [4], [5], [6], [7], [8], describing the theo-
retical aspects of the problem, providing various
heuristics for generating distance-optimal intra-
league and inter-league schedules, and applying
the results to optimize the NPB league schedule.

Shortly after introducing the Traveling Tourna-
ment Problem [2], Easton et al. formed a consulting
company to develop schedules for professional
sports leagues. Their company, the Sports Schedul-
ing Group, has received the contract to produce the
regular-season schedule for Major League Baseball
in six of the past seven years. Having now com-
pleted all of our research on NPB scheduling, our
hope is to obtain the contract to produce future
NPB regular-season schedules. We are excited by
the possibility of sharing our expertise and passion
with Nippon Professional Baseball, working in part-
nership with the league to produce schedules that
save money and reduce greenhouse gas emissions,
thus making an important contribution to Japan,
both economically and environmentally.
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Deterministic Global Minimum Cut of a
Simple Graph in Near-linear Time
Bv KK and Mikkel Thorup

ummary: not best papeor, but

= Finding adge connectivily one ol the most basic graph
problems “Can cultting k edges disconnect my graph?
You can explain it to a child
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STOC‘15 Result: Edge Connectivity

Graph Cut: One of the most famous problem
Partition G into (A,B) such that # of edges
between A and B is as small as possible.

G: n vertices and m edges.
K: cut size

Race by many giant’’ researchers in theory!

Ford and Fulkerson'56 O(mn?) <« Founder of Operation Research !

Even and Tarjan'75 O(nm!®) Turing prize winner

Karzanov and Timofeev'86 O(n3) — Russian researchers

Hao and Orlin'92 O(nm log(n®/m)) Deterministic

Ibaraki and Nagamochi'92 O(nm+n?log n) Deterministic

Gabow'93 O(km) Deterministic (for simple graphs)

Karger'94 O(mn9-3) (Randomize, Monte Carlo, Random Contraction)
Karger and Stein'96 O(n® log®m)  (Randomize, Monte Carlo)

Karger'99 O(m log3 n) (Randomize, Monte Carlo, Tree Packing)

KK and Thorup(STOC'15) O(m log'°n) Deterministicl (for simple graphs)



Given s and t,

Max # of edge-disjoint paths (flows)
= Min # of edge cut s and t

Race by many giant’ ’ researchers in theory!

Min-Max Theorem(Ford and Fulkerson)

Ford and Fulkerson'56 O(mn2) < Founder of Operation Research !

Even and Tarjan'75 O(nm!ld) < Turing prize winner

Karzanov and Timofeev'86 O(n3) — Russian researchers

Hao and Orlin'92 O(nm log(n?/m)) Deterministic

Ibaraki and Nagamochi'92 O(nm+n?log n) Deterministic

Gabow'93 O(km) Deterministic (for simple graphs)

Karger'94 O(mn9-3) (Randomize, Monte Carlo, Random Contraction)
Karger and Stein'96 O(n? log® m)  (Randomize, Monte Carlo)

Karger'99 O(m log? n) (Randomize, Monte Carlo, Tree Packing)

KK and Thorup(STOC'15) O(m log'® n) Deterministic! (for simple graphs)



Random Algorithms: Two kinds

¢ Monte Carlo Algorithm:

Guarantee the time complexity, and with high probability,
the answer is correct.

Kager's mincut: NO WAY to check that the cut is min...

¢ Las Vegas Algorithm:

Guarantee the correctness, but with small probability,
time complexity takes forever..



Why * " simple” graphs?

Key Observation 1: |
Let C be a " minimum” cut (of order at most k). Either |
1 One side is trivial (note that min degree is at least k), or

2. Both sides contain at least k-1 vertices..

Our luck:

Can assume that k > log® m (otherwise, we can get a min cut algorithm with
running time O(km) by Gabow, and done.)

In 2, we get a " sparse” cut (i.e., low conductance cut)!
Lognisa "magic’ number.. — KEY IDEA! Keep applying sparsest cuft!



Contractions!

o Observation 2:

Q: a subgraph s.t. each vertex in Q has degree at least k/2 in Q. If no sparsest
cut of conductance k/4 in Q — Q is contractible

(preserving all min nontrivial cuts)!

Note: k > log® n. So conductance is small..

The idea:

Find contractible subgraphs Q' such that after the contraction, the graph has at
most m/k edges (but all hontrivial cuts are there).

— By Gabow's, we get an O(m) algorithm.

How to find contractible subgraphs? Repeatedly cutting sparsest cuts!
— When we stuck, we get "contractible” subgraphs!



Some technical components for Sparse cut:

+ PageRank! (starting from one vertex) &Sparsest cut!
(Andersson, Chung, Lang)

Key Observation:
Let G be a simple graph with min degree k. If min-cut W is not trivial, then # of cut
edges of W is at most factor 2/k of # of edges in components.

— we can use PageRank
to find a sparsest cut W'
(with error factor log n <« k)
— # of cut edges for W' is
at most factor (2 log n/k) of
# of edges in W' in O(m)!
k > log®m




If we can " correctly” guess a vertex v in
Big Side G-W W and start PageRank from v, we can get a
sparse cut of conductance o(1/log n).
More we can say....

Min cut

Small side W



End Game!

Min cut

If u gets “small (< 1/m),
Then we can find a sparse cut!

Small side W

Big Side G-W



Small side W



Min cut

Small side W

Fix PageRank score after the cut of W

— Gauss-Southwell (KDD’15)!
— Time complexity: O(| W)



Finally

+ If we cannot find low-conductance (sparse) cut in W, then W is
contractible.

¢ The point:

Only apply O(log n) iterations to the small side W — average degree is
k - 5(|OP9PZ>;‘) >> k9/2... ’ ?

¢ Can do each " " small” component separately..
— spend only O(m) in total. Then we can find contractible subgraphs!

In the end, we have a graph with O(m/k) edges.

Well, cheating.....




The Directed Grid Theorem

Ken-ichi Kawarabayashi, NII, Tokyo
Stephan Kreutzer, TU Berlin
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The main motivation of this talk

WHAT ABOUT DIGRAPHS?

Can we do the same thing?

Warning: Not really known much.

Purposes of this talk: report some progress
future direction
and many opeh questions



Treewidth

o (T, W)is atree decomposition of G = (V, E)

> Tisatree, W={W, cV |teV(T)}
o > UWt =V, and every edge has both ends in some W,

teV (T)

> If t lies one the path in T between t' and t", then W, W, "W,

G T

» O0—0—0 ? O  Tree-width:
How close to a Tree
Width=1 & Tree




Treewidth

o (T, W)is atree decomposition of G = (V, E)

> Tisatree, W={W, cV |teV(T)}
o > UWt =V, and every edge has both ends in some W,

teV (T)

> If t lies one the path in T between t' and t", then W, < W, "W,

e width of (T, W) :=max, W|-1

e treewidth of G := min. width over all tree decompositions

G T
» 0—0—0 O Tree-width:
treewidth = 2 How close to a Tree

Width=1 & Tree



Importance of Tree-width

* (Algorithm) Many hard NP-hard problems can be solved
in linear time.

* (Algorithm) Fixed parameter-tractability

* (Graph Theory) Great tools in Structure Graph Theory

* (Logic) Courcelle’s theorem: every graph property that is definable in
MSO, can be decided in linear time for graphs of bounded tree-widthl

* (General) AL, Database, Data mining, Social Network, Programming
Language etc.



Treewidth and Grid minor (most important result in treewidth..)

Thm (Robertson-Seymour, 1986) The grid minor theorem N
For any I, there exists an integer f(r) s.t. for any graph G, either
e treewidth of Gis < f(r)

. X I -prid_mi
\_ G hasan rXr -grid-minor )
Known results
e f(r) :20(r5)’ f(r) ZQ(FZ log r) (Robertson-Seymour-Thomas [1994], Diestel et al. [1999])
Tree-width r

G contains an H-minor -> H can be obtained from G by deleting edges and contracting edges



Treewidth and Grid minor(most important result in treewidth..)

Thm (Robertson-Seymour, 1986) The grid minor theorem N
For any I, there exists an integer f(r) s.t. for any graph G, either
e treewidth of Gis < f(r)

O G hasan rXr -grid-minor )

Known results

e f(r) :20(r5)’ f(r) ZQ(FZ log r) (Robertson-Seymour-Thomas [1994], Diestel et al. [1999])

o G:planar f(r) = O(r) (Robertson-Seymour-Thomas [1994])

* G : bounded genus f(r) — O(r) (Demaine, Fomin, Hajiaghayi, Thilikos, [2005])
e G :H-minor-free f(r)y =cy-r (Demaine-Hajiaghayi [2008])

o G:Kj-minor-free  f(r) = 20%-r  (Demaine-Hajiaghayi —KK [2009])



Treewidth and Grid minor(most important result in treewidth..)

Ghm (Robertson-Seymour, 1986) The grid minor theorem )

For any I, there exists an integer f(r) s.t. for any graph G, either
e treewidth of Gis < f(r)

O G hasan rXr -grid-minor )

Known results
o f(r)=20(r5), f(r)=Q(r?logr)

(Robertson-Seymour-Thomas [1994], Diestel et al. [1999])
e G :H-minor-free f(r) = |V(H)|CUEMD - r (Kawarabayashi-Kobayashi [2012])

e G :general f(r) = 20(r*log 1) (Kawarabayashi-Kobayashi, Leaf-Seymour[2012])
e G: general f(r) = ro@ (Chekuri-Chuzoy[2013])

Importance of the grid minor theorem:

1. Fixed Parameter Tractability(FPT) ,
bidimetionality(Large vertex cover..)

2. Logic (FOL etc..)

3. Combinatorial Optimization(Routing..)
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What about digraphs?

Seems much harder!

Q.1 What is " " tree-width" for digraphs?

Q.2 What is " “minor” for digraphs?
What is grid minor for digraphs?

What should be ""grid?
1. Many cycles!
2. Globally connected



Tree-width for undirected graphs




Q1. What is Directed Tree-Width?

m Defined analogous to undirected tree width but based

on strong separators




Directed Tree Width
Directed tree-width:

35 How close to a DAG

< QO e

Definition. (Reed’97) (Johnson, Robertson, Seymour, Thomas 01)
Directed tree decomposition of G: triple (7, £, p)
* bags 4(t) < V(G) form a partition of the vertex set of G
o for all e=(s,t) € E(T): y(e) < V(G)
(1) = U{p(t’) - t <rt’} strong component of G - (e)

The width is the minimum of |£(2) U U. p(e)| overallt = V(T).



" A
CONJECTURE (Alon, Reed, Robertson, Seymour, Thomas, 1995

Th is g function f _such that di h of tree-width
at Ieeraeslr f?k)uﬂgslgncylinc“ilieical lc<( Xe\léegxidl%;ﬂi%%r.o reeti

Directed Grid should be

1. Many cycles

2. Globally connected

3. Directed tree-width
at least k

Minor: contract an edge Iif
only outgoing of tail or
only incoming of head.

Treds — S




" A
CONJECTURE (Alon, Reed, Robertson, Seymour, Thomas, 1995

Th is g function f _such that di h of tree-width
at Ieeraeslr f?k)uﬂgslgncylinc“ilieical lc<( Xe\léegxidl%;ﬂi%%r.o reeti

History:

True for planar graphs

(Johnson, Robertson, Seymour, Thomas, 99’
True for minor-closed

(KK& Kreutzer, SODA'14)

True if " " half-integral”
(KK&Kreuzer'STOC'14)

General case?? -> This is our main result!




Main Theorem (KK and Kreutzer, STOC 2015)

There is a function f such that every

digraph of tree-width at least f(k) has a cylindrical k x k
grid minor. Proof > 50 pages....
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all graph classes

Undirected Graphs .- .. STRUCTURE THEORY
| ) SUMMARY

Directed Graphs

The Grid Theorem




Beyond the Euler genus:

Approximating the genus of
general graphs

Ken-ichi Kawarabayashi

NIl, Tokyo

Joint work with Anastasios(Tasos) Sidiropoulos
To appear in STOC’15



Surface

m By a surface, we mean a compact 2-dimensional
manifold.

m We consider plane with crosscaps or handles.
m Plane + crosscap: Projective planar.

m Plane + handle : Torus

m Plane + two crosscaps : Klein bottle










Embedding into a surface

m Embed graph in a surface with no edge crossings.
m Minor-closed.

m Euler genus of complete graphs and complete
bipartite graphs are known (Heawood 1890!)

m But very little about other graphs....

m Problem(One of original Garey-Johnson)

What is the genus of a given graph? Can you
compute?

m NP-complete to determine Euler genus of a given
graph. (Thomassen, 1988)



Embedding into a surface

m For fixed Euler genus g, O(n9) algorithm. (Filotti,
Miller and Reif, 1990)

m O(n3) algorithm. (Robertson and Seymour, 1995)
m Linear time algorithm. (Mohar, 1997)

m Mohar's algorithm gives either an embedding in
the surface of Euler genus k or an obstruction
(One of minimal forbidden minors.)



New Algorithm(FOCS'08)

m With B. Reed and B. Mohar
m We get another linear time algorithm.
m Better in the following sense:

1. Proof < 25 pages (Mohar's proof > 100 pages)
2. Hidden constant is better. But 29



= S
Approximation Algorithm

m No way to compute if g is bigger than log n.
m NP-hard to decide g (Thomassen).

m Trivial approximation: O(n/g).
Euler Formula: |V|-|[E|+|F|=2-g — O(n/g)-approximation.

m Essentially nothing is known between NP-hardness and Trivial bound!
m No hardness result is known! (O(1) is NOT ruled out)



= S
Our main result: First non-trivial” approximation

Theorem: Given a graph G and an integer g, in P, we can either

1. Correctly determine that G cannot be embedded in a surface
of Euler genus g, or

2. Output an embedding of G in a surface of Euler genus g2%°
log*0 n.

Corollary. O(n*-¢)-approximation algorithm to compute Euler
genus

For some small (but absolute constant) c.
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