ICML 2016 NYC

Structure Learning of Partitioned Markov Networks

Song Liu¹, Taiji Suzuki², Masashi Sugiyama³ and Kenji Fukumizu¹

- 1. The Institute of Statistical Mathematics
- 2. Tokyo Institute of Technology, JST PRESTO
 - 3. University of Tokyo

1. Markov Network

- 2. Partitioned Markov Network
- 3. Learning Partitioned Markov Network
- 4. Experiments
- 5. Conclusion

Markov Network (MN)

• Markov Network: *undirected* graphical model, encoding the *conditional independence* between random variables.

$$P(X_1, X_2, ..., X_m) \longrightarrow X_u \text{ and } X_v \text{ are not connected} X_u \perp X_v | X_{\setminus \{X_u, X_v\}}$$

" x_u and x_v directly influences each other if connected. "

Learning Sparse Structure of MN

• Hammersley-Clifford Theorem (Hammersley & Clifford, 1971).

- Learning a *sparse* factorization of density function.
- $\widehat{\mathbf{\Theta}} = \operatorname{argmax}_{\mathbf{\Theta}} \sum_{x} \log p(x; \mathbf{\Theta}) \lambda ||\mathbf{\Theta}||_{1}, \mathbf{\Theta} \in \mathbb{R}^{m \times m}.$
 - (Friedman et al., 2008)

Sparsity inducing norm

Why not learn a full MN?

Not a good idea...

- Too few samples.
- Full model is beyond our understanding.
- We are only interested in partial connections!

1. Markov Network

2. Partitioned Markov Network

- 3. Learning Partitioned Markov Network
- 4. Experiments
- 5. Conclusion

Partitioned Networks

British Parliament

(WIKIPEDIA: House of Commons of the United Kingdom)

Some networks are naturally partitioned.

Partitioned MN

a full network

 Discover intergroup links of a partitioned network is key in many applications

Partitioned (Local) Markovian Property

Partitioned Markovian Property: $\forall X_u \in X1, \forall X_v \in X2,$ If X_u and X_v are **not** connected,

 $X_u \perp X_v \mid X_{\setminus \{X_u, X_v\}}$

X = (X1, X2) is a partition of X.

Partitioned MN does **not** guarantee: $\forall X_u, X_v \in X$, If X_u and X_v are not connected, $X_u \perp X_v \mid X_{\setminus \{X_u, X_v\}}$

Local Factorization of Partitioned MN

Recall, the full MN factorizes over the cliques (Hammersley Clifford Theorem).

What can we say about the partitioned MN?

Factorization of Partitioned MN

- An analog to Hamersley-Clifford Theorem
- Factorization is over a novel structure: Passage.

We define **passage** *B* a sub-graph of *G*, such that $X_B \cap X1 \neq \emptyset$, $X_B \cap X2 \neq \emptyset$, $\forall X_u \in X1 \cap X_B$ and $\forall X_v \in X2 \cap X_B$, (X_u, X_v) is in the edge set.

- 1. Markov Network
- 2. Partitioned Markov Network

3. Learning Partitioned Markov Network

- 4. Experiments
- 5. Conclusion

From Partitioned Ratio to Structure

• Knowing **factorization** of Partitioned Ratio = Knowing **passages structures** in Partitioned MN.

If $x_u \in X1$, $x_v \in X2$ do **not** appear in the same passage factor at least once, $X_u \perp X_v | \setminus X_u, X_v$ (See Proposition 2 in the paper).

• Pairwise assumption:

$$\frac{p(x_1, x_2)}{p(x_1)p(x_2)} \propto \prod_{b \in \mathbf{B}} \phi\left(\mathbf{x}_b\right) = \prod_{b \in \mathbf{B}} \prod_{X_u, X_v \in X_B} h_{u,v}\left(x_u, x_v\right)$$

Learning Pairwise Partitioned Ratio

• Given the partition $P(\mathbf{x}) = P(\mathbf{x}_1, \mathbf{x}_2), \mathbf{x} \in \mathbb{R}^m$ and paired sample $\{(\mathbf{x}_1^{(i)}, \mathbf{x}_2^{(i)})\}_{i=1}^n \sim P$, PR can be modelled as:

$$g(\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{\boldsymbol{N}(\boldsymbol{\theta})} \exp\left[\sum_{u \leq v} \boldsymbol{\theta}_{u,v}^{\top} \boldsymbol{f}(\boldsymbol{x}_{u,v})\right],$$

- *N*(*θ*) is a **normalization term**:
- $N(\boldsymbol{\theta}) := \int p(\boldsymbol{x}_1) \int p(\boldsymbol{x}_2) \exp\left[\sum_{u,v} \boldsymbol{\theta}_{u,v}^{\top} \boldsymbol{f}(\boldsymbol{x}_{u,v})\right] d\boldsymbol{x}_2 d\boldsymbol{x}_1$

Learning Pairwise Partitioned Ratio

 N(*θ*) can be approximated by U-statistics (Hoeffding, 1963)

•
$$N(\boldsymbol{\theta}) \approx \widehat{N}(\boldsymbol{\theta}) = \frac{1}{\binom{2}{n}} \sum_{j \neq k} \exp\left[\sum_{u,v} \boldsymbol{\theta}_{u,v}^{\top} \boldsymbol{f}\left(\boldsymbol{x}_{u,v}^{[j,k]}\right)\right]$$

• where $\boldsymbol{x}^{[j,k]} = \left(\boldsymbol{x}_{1}^{(j)}, \boldsymbol{x}_{2}^{(k)}\right)$.

Maximum Likelihood Mutual Information: (Suzuki et al., 2008):

$$\hat{\theta} = \underset{\Theta}{\operatorname{argmax}} P_{X} \log g(\boldsymbol{x}; \boldsymbol{\theta}) - \lambda \sum_{u,v} ||\boldsymbol{\theta}_{u,v}||_{2}$$

Included for sparsity

- 1. Markov Network
- 2. Partitioned Markov Network
- 3. Learning Partitioned Markov Network

4. Experiments

5. Conclusion

Experiments: Bipartisanship

- Learn the Bipartisanship in U.S. 109th senate.
- 45 Democrats, 55 Republicans.
- PMN learned over 645 recorded votes (Yea, Nay, not voting).
- Increasing regularization parameter until more than 15 edges.

- 1. Markov Network
- 2. Partitioned Markov Network
- 3. Learning Partitioned Markov Network
- 4. Experiments
- 5. Conclusion

Conclusion

- We learn interactions across two groups of random variables.
- Such interaction is expressed via **Partitioned Markov Network**.
- Learning sparse **factorization** of Partitioned Ratio leads to the discovery of **interactions** between two groups.

