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• Markov Network: undirected graphical model, encoding 
the conditional independence between random variables.

Markov Network (MN)

𝑃(𝑋1, 𝑋2, … , 𝑋𝑚)

𝑋𝑢 and 𝑋𝑣 are not
connected

𝑋𝑢 ⊥ 𝑋𝑣| 𝑋∖ 𝑋𝑢,𝑋𝑣

𝑋𝑢

𝑋𝑣
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• Hammersley-Clifford Theorem (Hammersley & Clifford,1971). 

• Learning a sparse factorization of density function.

• 𝚯 = argmax𝚯σ𝒙 log 𝑝(𝒙;𝚯) − 𝜆 𝚯
1
, 𝚯 ∈ ℝ𝑚×𝑚.

• (Friedman et al., 2008)

Learning Sparse Structure of MN

Cliques 𝒄: fully connected sub-graph

1 2

𝑋
𝜙(𝑥1, 𝑥2)

𝑝 𝒙 ∝ෑ

𝑐∈𝑪

𝜙(𝒙𝑐)
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Sparsity inducing norm



• Too few samples. 

• Full model is beyond our understanding. 

• We are only interested in partial connections!

Why not learn a full MN?

5

Not a good idea… 



1. Markov Network

2. Partitioned Markov Network 

3. Learning Partitioned Markov Network

4. Experiments

5. Conclusion

Outline

6



Some networks are naturally partitioned.

Partitioned Networks
British Parliament
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(WIKIPEDIA: House of Commons of the United Kingdom)



Partitioned MN

• Discover intergroup links of a partitioned 

network is key in many applications

𝑋𝑣

𝑋𝑢

a full network

?

?
? ?

?
?

?

𝑋𝑣

𝑋𝑢

a partitioned network
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Focus!



Partitioned (Local) Markovian Property

Partitioned Markovian Property:
∀𝑋𝑢 ∈ 𝑋1, ∀𝑋𝑣∈ 𝑋2,

If 𝑋𝑢 and 𝑋𝑣 are not connected, 
𝑋𝑢 ⊥ 𝑋𝑣 | 𝑋\{𝑋𝑢,𝑋𝑣}

𝑋 = (𝑋1, 𝑋2) is a partition of 𝑋.

Partitioned MN does not guarantee:
∀𝑋𝑢, 𝑋𝑣 ∈ 𝑋, If 𝑋𝑢 and 𝑋𝑣 are not connected, 

𝑋𝑢 ⊥ 𝑋𝑣 | 𝑋\{𝑋𝑢,𝑋𝑣}

𝑋1 𝑋2

?

?
?
?
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Local Factorization of Partitioned MN
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Recall, the full MN factorizes over the cliques 
(Hammersley Clifford Theorem).  

What can we say about the partitioned MN?

Cliques 𝒄: fully connected sub-graph

1 2

𝑋
𝜙(𝑥1, 𝑥2)

𝑝 𝒙 ∝ෑ

𝑐∈𝑪

𝜙(𝒙𝑐)



• An analog to Hamersley-Clifford Theorem

• Factorization is over a novel structure: Passage.

Factorization of Partitioned MN

Partitioned Ratio
𝑋1 𝑋2

𝑝(𝑥1, 𝑥2)
𝑝(𝑥1)𝑝(𝑥2)

∝

𝑩: the set of Passage structures. 
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ෑ

𝑏∈𝑩

𝜙(𝒙𝑏)



Passage

𝑋1 𝑋2

Passage
…𝑋1 𝑋2

𝑋1 𝑋2

We define passage 𝐵 a sub-graph of 𝐺, such that
𝑋𝐵 ∩ 𝑋1 ≠ ∅, 𝑋𝐵 ∩ 𝑋2 ≠ ∅, ∀𝑋𝑢 ∈ 𝑋1 ∩ 𝑋𝐵 and
∀𝑋𝑣 ∈ 𝑋2 ∩ 𝑋𝐵, 𝑋𝑢, 𝑋𝑣 is in the edge set.
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• Knowing factorization of Partitioned Ratio = 
Knowing passages structures in Partitioned MN. 

• Pairwise assumption:
𝑝(𝑥1,𝑥2)

𝑝(𝑥1)𝑝(𝑥2)
∝ ς𝑏∈𝑩𝜙 𝒙𝑏 = ς𝑏∈𝑩ς𝑋𝑢,𝑋𝑣∈𝑋𝐵

ℎ𝑢,𝑣 𝑥𝑢, 𝑥𝑣

From Partitioned Ratio to Structure

If 𝑥𝑢 ∈ 𝑋1, 𝑥𝑣 ∈ 𝑋2 do not appear in 
the same passage factor at least once, 
𝑋𝑢 ⊥ 𝑋𝑣| \𝑋𝑢, 𝑋𝑣 (See Proposition 2 in the paper). 
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• Given the partition 𝑃 𝒙 = 𝑃 𝒙1, 𝒙2 , 𝒙 ∈ 𝑅𝑚 and 

paired sample 𝒙1
𝑖
, 𝒙2

𝑖

𝑖=1

𝑛
∼ 𝑃, PR can be modelled 

as:

𝑔 𝒙; 𝜽 =
1

𝑁 𝜽
exp 

𝑢≤𝑣

𝜽𝑢,𝑣
⊤ 𝒇 𝒙𝑢,𝑣 ,

• 𝑁 𝜽 is a normalization term: 

• 𝑁 𝜽 := ∫ 𝑝 𝒙1 ∫ 𝑝 𝒙2 exp σ𝑢,𝑣 𝜽𝑢,𝑣
⊤ 𝒇 𝒙𝑢,𝑣 𝑑𝒙2𝑑𝒙𝟏

Learning Pairwise Partitioned Ratio
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• 𝑁 𝜽 can be approximated by U-statistics

(Hoeffding, 1963)

• 𝑁 𝜽 ≈ 𝑁 𝜽 =
1
2
𝑛

σ𝑗≠𝑘 exp σ𝑢,𝑣𝜽𝑢,𝑣
⊤ 𝒇 𝒙𝑢,𝑣

𝑗,𝑘

• where 𝒙[𝑗,𝑘] = 𝒙1
𝑗
, 𝒙2

𝑘
.

Learning Pairwise Partitioned Ratio 

መ𝜃 = argmax
𝚯

𝑃X log 𝑔 𝒙; 𝜽 − 𝜆

𝑢,𝑣

||𝜽𝑢,𝑣||2

Maximum Likelihood Mutual Information: 
(Suzuki et al., 2008):

Included for sparsity
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• Learn the Bipartisanship in U.S. 109th senate.

• 45 Democrats, 55 Republicans. 

• PMN learned over 645 recorded votes (Yea, Nay, not voting).

• Increasing regularization parameter until more than 15 edges. 

Experiments: Bipartisanship

vote agreement
vote disagreement
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• We learn interactions across two groups of 
random variables.

• Such interaction is expressed via Partitioned 
Markov Network. 

• Learning sparse factorization of Partitioned 
Ratio leads to the discovery of interactions
between two groups. 

Conclusion
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