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Graph mining

» The goal of frequent subgraph mining is to find a set of subgraphs
that frequently appear in a database.

» Some computational tricks for handling exponentially large number
of subgraphs are needed for graph mining tasks.

» Many efficient algorithms that exploit anti-monotonicity properties
of subgraph frequencies exist in the literature.
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Itemset mining

» The goal of frequent itemset mining is to find a set of items that
frequently appear in a database.

» Some computational tricks for handling exponentially large number
of itemsets are needed for itemset mining tasks.

» Many efficient algorithms that exploit anti-monotonicity properties
of itemset frequencies exist in the literature.
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Anti-monotonicity property among patterns

» The frequency of a pattern in an ancestor node is greater than or
equal to the frequency of a pattern in its any descendant node.
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Predictive pattern mining

» The goal of predictive pattern mining is to learn a classification or
regression model f as a function of the existences of patterns.

> A graph classification/regression model looks like

F=w (D)t w () +ws(T)+wi P+

> An itemset classification/regression model looks like

f=w1+w2+w3—|—w4_|_...

> A classification/regression model f is learned over exponentially
large number of patterns: some computational tricks are needed.
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Can we use existing feature selection algorithms in statistics and ML?

> Feature selection for classification/regression models have been
intensively studied in statistics and machine learning.

» marginal screening

(e.g.) correlations, x? statistics
» stepwise selection

(e.g.) forward selection / backward elimination
» sparse modeling

(e.g.) Li-norm regularization

> Existing feature selection algorithms in statistics and ML cannot be
directly applied to predictive pattern mining problems because there
are exponentially large number of features (patterns).
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This talk in a nutshell

> We study predictive pattern mining problems (graph mining and
itemset mining) for regression and classification tasks.

> We select a subset of predictive patterns by using sparse modeling
(L1 regularization).

» To handle exponentially large number of patterns, we propose a
novel algorithm called safe pruning rule.

» The safe pruning rule is an extension of safe screening rules which
have been recently actively studied in ML literature.

f=w1@+w2+w3+w4+...
f=w1+w2®+w3+w4+...
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Problem Setup and Basic Idea
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Problem setup (dataset)

v

Training dataset
{(Gi,yi) Yy

G, is a graph or a set of items

y; € R for regression, y; € {£1} for binary classification

tth

G, is represented as a binary vector ; € R” whose t*P-element is

defined as
x4 := I(t C G;) for each pattern t in the database,

where D is the number of all possible patterns (too huge to handle
naively).
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Dataset looks like

Y, | G; g
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Problem setup (sparse modeling)

» Huge-dimensional linear model for regression or classification:
f(il)l) = W1x;1 +Wokio + ... +WpDT;ip

» Sparse modeling: introduce a mechanism to make coefficients
sparse via Lq-regularization (LASSO)

n

D
w” :=arg min P(w) := Z(yz - m:w)2 + )‘Z |wj
j=1

RD
we i=1

» Active patterns are defined as

A= {je{l,...,D} | w} #0}
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Basic idea

» The difficulty lies in the fact that existing LASSO solvers cannot be
used because D is too huge.

» Our idea is to find a superset of the active set:
AD A",

and solve the optimization problem over A (assuming A is small
enough).

» It can be guaranteed that the optimal solution of the problem
defined on A O A* is also optimal for the original problem, i.e.,
wi

w:P[ 0

} where P is the permutation matrix,

and

n
why = argrquljijl Z(yz —zwa)® + A Z |wj]
i=1 JjeA
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Safe screening

is a method to find a superset A O A* in ordinal LASSO problem (but
cannot be applied to predictive pattern mining problems without tricks).
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Safe screening for LASSO (1)

» Primal Problem:

weRP

D
w” :=arg min P(w) := Z(yz - a:?w)2 + )‘Z |wj
» Dual Problem:

1 1 \?
0* = i - i — <Y .C.
arggrelleri 2 (9 /\y> st

» Sparsity Condition:

<l = w;=0,

n

*
E x450;
1=1

——

score
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Safe screening for LASSO (2)

> Using convex optimization theory, we can find a ball B in the dual
solution space in which the dual optimal solution 8* exists:

B:={0]6" —c| <r} where ¢c:=0,r := 2"/ P(w) — D()

> Safe screening exploits the fact that 8* € 3 in order to identify
sparse features:

n n
max E 1'1]91 <1l = E CL’Z]Q:( <1l = w; =0
0cB |4 y
i=1 i=1
UB of the score<1 the score<1 sparse

Active constraint —
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Safe pruning

is an extension of safe screening for handling exponentially large number
of patterns in predictive pattern mining problems.
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Safe pruning rule

» We cannot compute safe feature screening bounds for each of these
exponentially large number of patterns.

v

We develop a safe pruning rule spr(j) for each node j in the tree
such that

n

> iy by

i=1

spr(j) is true = <1 = wj =0 forall j’ € Des(j),

where Des(j) is the set of descendant nodes of the node j.
J

J'€Des(])
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Safe pruning rule (how it works)

» Finding a superset A of the active set A* := {j | w} # O}:

spr(z) = false, A= {zn}
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" A
Safe pruning rule (how it works)

» Finding a superset A of the active set A* := {j | w} # O}:

spr(zi122) =true, A= {z}
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Safe pruning rule (how it works)

» Finding a superset A of the active set A* := {j | w} # O}:

spr(ziz3) = false, A= {z1,2123}
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Safe pruning rule (how it works)

» Finding a superset A of the active set A* := {j | w} # O}:

Spr(212324) = false, A = {2’1, 2123, 212324}
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Safe pruning rule (how it works)

» Finding a superset A of the active set A* := {j | w} # O}:

spr(zi1z4) = true, A= {z1,2123,212324}

18/26



" A
Safe pruning rule (how it works)

» Finding a superset A of the active set A* := {j | w} # O}:

Spr(ZQ) =true, A= {Zl, 2123, 212324}
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» Finding a superset A of the active set A* := {j | w} # O}:

spr(z;;) = true, A= {Zl, 2123, 212324}

18/26



" A
Safe pruning rule (how it works)

» Finding a superset A of the active set A* := {j | w} # O}:

spr(z,) = false, A= {z1,2123,212324, 24}
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Safe pruning rule (how it works)

» Finding a superset A of the active set A* := {j | w} # O}:

A = {Zla 212372:12324)24}
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Experiments
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Problem setup in experiments

Computing a sequence of solutions for various A values

Input: {(Gi,yi) Yiepn), { Ak trerr
1. Compute Ag and wi =0

2. fork=1,...,K do

3. Find A\, 2 A3, by using the SPP based on
wj_, and 6;_,

4. Solve an optimization problem defined only with
the set of patterns in A,

5. end for

Output:  {wj}rer) 105 he(x]
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Competing method in experiments

» We compared the computational costs of the proposed safe pattern
pruning with g-boost ! and i-boost .

> In these boosting-based approaches, the most active feature (the
most violating constraint in the dual) is added one by one.

» These boosting-based approaches also exploit the tree structure
among the patterns when it finds the most active feature.

» These boosting-based approaches require multiple searches over the
tree (every time a new active feature is added).

1H. Saigo, T. Uno and K. Tsuda. Mining complex genotypic features for predicting hiv-1 drug resistance
(Bioinformatics, 2006)
H. Saigo, T. Uno and K. Tsuda. Mining complex genotypic features for predicting hiv-1 drug resistance.

(Bioinformatics, 2006)
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Results in experiments
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Summary

» Predictive pattern mining problems are still challenging, i.e., it is
still difficult to efficiently identify a subset of patterns that are
useful for prediction tasks.

» Safe screening method recently developed in ML literature is a new
promising approach for making sparse modeling efficient (although
it cannot be directly applied to pattern mining problems).

» The proposed safe pruning method exploits the tree structure and
the anti-monotonicity property among the patterns in order to
handle exponentially large number of patterns in the database.
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Related studies in our group

> Selective inference for discovered patterns Suzumura, Nakagawa, Sugiyama,
Tsuda, Takeuchi. Selective Inference Approach for Statistically Sound Predictive Pattern Mining (arXiv,

2016)

» Safe screening method for samples in SVM
Ogawa, Suzuki and Takeuchi. Safe screening of non-support vectors in pathwise SVM computation

(ICML2013)

» Simultaneous safe screening for features and samples
Shibagaki, Karasuyama, Hatano, Takeuchi. Simultaneous safe screening of features and sample in doubly

sparse modeling (ICML2016)

> Quick sensitivity analysis
Okumura, Suzuki and Takeuchi. Quick sensitivity analysis for incremental data modification and its

application to leave-one-out CV in linear classification problems (KDD2015)

» Approximate model selection
Shibagaki, Suzuki, Karasuyama Takeuchi. Regularization path of cross-Validation error lower bounds

(NIPS2015)
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P . Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space (Journal of The
Royal Statistical Society B, 2008)

> E Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon. Gap safe screening rules for sparse multi-task and
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> H Saigo, T. Uno and K. Tsuda. Mining complex genotypic features for predicting hiv-1 drug resistance
(Bioinformatics, 2006)

> H Saigo, S. Nowozin, T. Kadowaki, T. Kudo, K. Tsuda. gboost: a mathematical programming approach
to graph classification and regression (Machine Learning, 2009)

P Hanada, Shibagaki, Sakuma, Takeuchi. Efficiently Bounding Optimal Solutions after Small Data
Modification in Large-Scale Empirical Risk Minimization (arXiv, 2016)
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Thank you
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