Safe Pattern Pruning: An Efficient Approach for Predictive Pattern Mining (KDD2016)

Ichiro Takeuchi

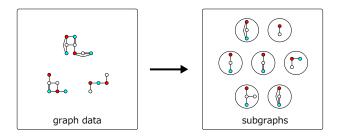
Nagoya Institute of Technology, Japan

Joint work with

Kazuya Nakagawa, Shinya Suzumura, Masayuki Karasuyama, Koji Tsuda

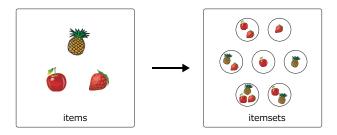
Graph mining

- The goal of frequent subgraph mining is to find a set of subgraphs that frequently appear in a database.
- Some computational tricks for handling exponentially large number of subgraphs are needed for graph mining tasks.
- Many efficient algorithms that exploit anti-monotonicity properties of subgraph frequencies exist in the literature.



Itemset mining

- The goal of frequent itemset mining is to find a set of items that frequently appear in a database.
- Some computational tricks for handling exponentially large number of itemsets are needed for itemset mining tasks.
- Many efficient algorithms that exploit anti-monotonicity properties of itemset frequencies exist in the literature.



Anti-monotonicity property among patterns

The frequency of a pattern in an ancestor node is greater than or equal to the frequency of a pattern in its any descendant node.



Predictive pattern mining

- ► The goal of predictive pattern mining is to learn a classification or regression model *f* as a function of the existences of patterns.
- A graph classification/regression model looks like

$$f = w_1 \bigcirc + w_2 \bigcirc + w_3 \bigcirc + w_4 \bigcirc + \cdots$$

An itemset classification/regression model looks like

$$f = w_1 \bigoplus + w_2 \bigoplus + w_3 \bigoplus + w_4 \bigoplus + \cdots$$

 A classification/regression model f is learned over exponentially large number of patterns: some computational tricks are needed. Can we use existing feature selection algorithms in statistics and ML?

- Feature selection for classification/regression models have been intensively studied in statistics and machine learning.
 - marginal screening
 - (e.g.) correlations, χ^2 statistics
 - stepwise selection
 - (e.g.) forward selection / backward elimination
 - sparse modeling

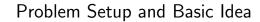
(e.g.) L_1 -norm regularization

 Existing feature selection algorithms in statistics and ML cannot be directly applied to predictive pattern mining problems because there are exponentially large number of features (patterns).

This talk in a nutshell

- We study predictive pattern mining problems (graph mining and itemset mining) for regression and classification tasks.
- ➤ We select a subset of predictive patterns by using sparse modeling (L₁ regularization).
- To handle exponentially large number of patterns, we propose a novel algorithm called safe pruning rule.
- The safe pruning rule is an extension of safe screening rules which have been recently actively studied in ML literature.

$$f = w_1 + w_2 + w_3 + w_4 + \cdots$$
$$f = w_1 + w_2 + w_2 + w_3 + w_4 + \cdots$$



Problem setup (dataset)

Training dataset

 $\{(G_i, y_i)\}_{i=1}^n$

- G_i is a graph or a set of items
- ▶ $y_i \in \mathbb{R}$ for regression, $y_i \in \{\pm 1\}$ for binary classification
- ▶ G_i is represented as a binary vector $x_i \in \mathbb{R}^D$ whose t^{th} -element is defined as

 $x_{it} := I(t \subseteq G_i)$ for each pattern t in the database,

where D is the number of all possible patterns (too huge to handle naively).

Dataset looks like

y_{i}	G_i	P	Ğ	\$ _0	•••
-1		1	1	1	•••
+1		1	0	1	
-1	***	1	0	0	•••
:	•	:	•	:	•.

Problem setup (sparse modeling)

Huge-dimensional linear model for regression or classification:

$$f(x_i) = w_1 x_{i1} + w_2 x_{i2} + \ldots + w_D x_{iD}$$

► Sparse modeling: introduce a mechanism to make coefficients sparse via *L*₁-regularization (LASSO)

$$oldsymbol{w}^* := rg\min_{oldsymbol{w}\in\mathbb{R}^D} P(oldsymbol{w}) := \sum_{i=1}^n (y_i - oldsymbol{x}_i^ opoldsymbol{w})^2 + \lambda \sum_{j=1}^D |w_j|$$

Active patterns are defined as

$$\mathcal{A}^* := \{ j \in \{1, \dots, D\} \mid w_j^* \neq 0 \}$$

Basic idea

- The difficulty lies in the fact that existing LASSO solvers cannot be used because D is too huge.
- Our idea is to find a superset of the active set:

$$\mathcal{A} \supseteq \mathcal{A}^*,$$

and solve the optimization problem over ${\cal A}$ (assuming ${\cal A}$ is small enough).

It can be guaranteed that the optimal solution of the problem defined on A ⊇ A* is also optimal for the original problem, i.e.,

$$oldsymbol{w}^* = P \left[egin{array}{c} oldsymbol{w}^*_{\mathcal{A}} \\ oldsymbol{0} \end{array}
ight]$$
 where P is the permutation matrix,

and

$$\boldsymbol{w}_{\mathcal{A}}^* := rg\min_{\boldsymbol{w}_{\mathcal{A}}} \sum_{i=1}^n (y_i - \boldsymbol{x}_{i\mathcal{A}}^{ op} \boldsymbol{w}_{\mathcal{A}})^2 + \lambda \sum_{j \in \mathcal{A}} |w_j|$$

Safe screening

is a method to find a superset $\mathcal{A} \supseteq \mathcal{A}^*$ in ordinal LASSO problem (but cannot be applied to predictive pattern mining problems without tricks).

Safe screening for LASSO (1)

Primal Problem:

$$\boldsymbol{w}^* := \arg\min_{\boldsymbol{w}\in\mathbb{R}^D} P(\boldsymbol{w}) := \sum_{i=1}^n (y_i - \boldsymbol{x}_i^\top \boldsymbol{w})^2 + \lambda \sum_{j=1}^D |w_j|$$

► Dual Problem:

$$\boldsymbol{\theta}^* := \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \left| \frac{1}{2} \left(\theta_i - \frac{1}{\lambda} y_i \right)^2 \right| \texttt{s.t.} \left| \sum_{i=1}^n x_{ij} \theta_i \right| \leq 1, \forall j$$

Sparsity Condition:

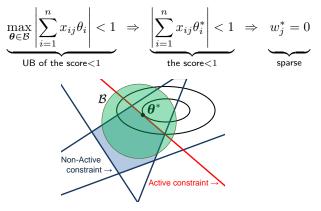
$$\left| \underbrace{\sum_{i=1}^{n} x_{ij} \theta_i^*}_{i} \right| < 1 \quad \Rightarrow \quad w_j^* = 0,$$

Safe screening for LASSO (2)

Using convex optimization theory, we can find a ball B in the dual solution space in which the dual optimal solution θ* exists:

$$\mathcal{B} := \{ \boldsymbol{\theta} \mid \| \boldsymbol{\theta}^* - \boldsymbol{c} \| \leq r \} \text{ where } \boldsymbol{c} := \hat{\boldsymbol{\theta}}, r := 2\lambda^{-1} \sqrt{P(\hat{\boldsymbol{w}}) - D(\hat{\boldsymbol{\theta}})}$$

Safe screening exploits the fact that θ^{*} ∈ B in order to identify sparse features:



Safe pruning

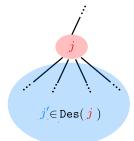
is an extension of safe screening for handling exponentially large number of patterns in predictive pattern mining problems.

Safe pruning rule

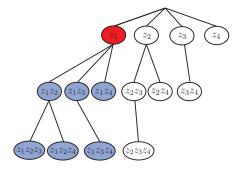
- We cannot compute safe feature screening bounds for each of these exponentially large number of patterns.
- We develop a safe pruning rule spr(j) for each node j in the tree such that

$$\operatorname{spr}(j)$$
 is true $\Rightarrow \left|\sum_{i=1}^n x_{ij'} \theta_i^*\right| < 1 \Rightarrow w_{j'}^* = 0$ for all $j' \in \operatorname{Des}(j)$,

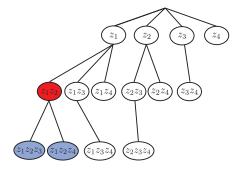
where Des(j) is the set of descendant nodes of the node j.



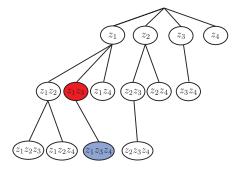
$$\operatorname{spr}(\boldsymbol{z_1}) = \operatorname{false}, \quad \mathcal{A} = \{z_1\}$$



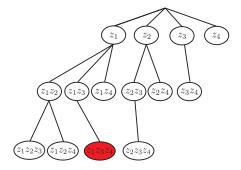
$$\operatorname{spr}(z_1 z_2) = \operatorname{true}, \quad \mathcal{A} = \{z_1\}$$



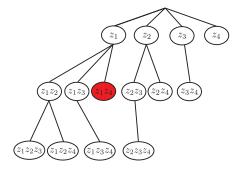
$$\mathtt{spr}(oldsymbol{z_1}{oldsymbol{z_3}}) = \mathsf{false}, \quad \mathcal{A} = \{z_1, z_1 z_3\}$$



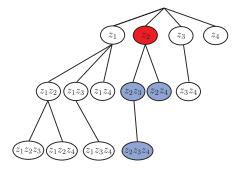
$$\operatorname{spr}(z_1z_3z_4) = \operatorname{false}, \quad \mathcal{A} = \{z_1, z_1z_3, z_1z_3z_4\}$$



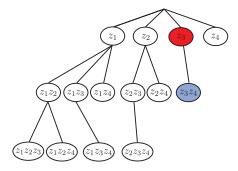
$$spr(z_1z_4) = true, \quad \mathcal{A} = \{z_1, z_1z_3, z_1z_3z_4\}$$



$$\operatorname{spr}(z_2) = \operatorname{true}, \quad \mathcal{A} = \{z_1, z_1 z_3, z_1 z_3 z_4\}$$

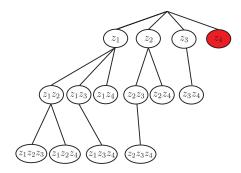


$$spr(z_3) = true, \quad \mathcal{A} = \{z_1, z_1z_3, z_1z_3z_4\}$$



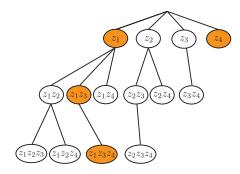
• Finding a superset \mathcal{A} of the active set $\mathcal{A}^* := \{j \mid w_j^* \neq 0\}$:

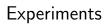
 $spr(z_4) = false, \quad A = \{z_1, z_1z_3, z_1z_3z_4, z_4\}$



• Finding a superset \mathcal{A} of the active set $\mathcal{A}^* := \{j \mid w_j^* \neq 0\}$:

 $\mathcal{A} = \{z_1, z_1 z_3, z_1 z_3 z_4, z_4\}$





Problem setup in experiments

Computing a sequence of solutions for various λ values

Input:
$$\{(G_i, y_i)\}_{i \in [n]}, \{\lambda_k\}_{k \in [K]}$$

- 1. Compute λ_0 and $oldsymbol{w}_0^* = oldsymbol{0}$
- 2. for k = 1, ..., K do
- 3. Find $\mathcal{A}_{\lambda_k} \supseteq \mathcal{A}^*_{\lambda_k}$ by using the SPP based on w^*_{k-1} and $extsf{ heta}^*_{k-1}$
- 4. Solve an optimization problem defined only with the set of patterns in A_{λ_k}

5. end for

Output: $\{oldsymbol{w}_k^*\}_{k\in[K]}$, $\{oldsymbol{ heta}_k^*\}_{k\in[K]}$

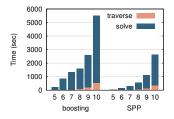
Competing method in experiments

- We compared the computational costs of the proposed safe pattern pruning with g-boost¹ and i-boost².
- In these boosting-based approaches, the most active feature (the most violating constraint in the dual) is added one by one.
- These boosting-based approaches also exploit the tree structure among the patterns when it finds the most active feature.
- These boosting-based approaches require multiple searches over the tree (every time a new active feature is added).

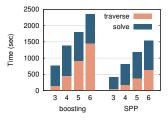
²H. Saigo, T. Uno and K. Tsuda. Mining complex genotypic features for predicting hiv-1 drug resistance. (Bioinformatics, 2006)

¹ H. Saigo, T. Uno and K. Tsuda. Mining complex genotypic features for predicting hiv-1 drug resistance (Bioinformatics, 2006)

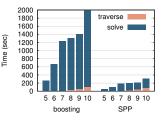
Results in experiments



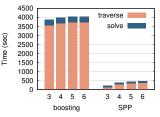
Graph Data1 (classification)



Item Data1 (classification)



Graph Data2 (regression)



Item Data2 (regression)

- Predictive pattern mining problems are still challenging, i.e., it is still difficult to efficiently identify a subset of patterns that are useful for prediction tasks.
- Safe screening method recently developed in ML literature is a new promising approach for making sparse modeling efficient (although it cannot be directly applied to pattern mining problems).
- The proposed safe pruning method exploits the tree structure and the anti-monotonicity property among the patterns in order to handle exponentially large number of patterns in the database.

Related studies in our group

- Selective inference for discovered patterns Suzumura, Nakagawa, Sugiyama, Tsuda, Takeuchi. Selective Inference Approach for Statistically Sound Predictive Pattern Mining (arXiv, 2016)
- Safe screening method for samples in SVM
 Ogawa, Suzuki and Takeuchi. Safe screening of non-support vectors in pathwise SVM computation (ICML2013)
- Simultaneous safe screening for features and samples
 Shibagaki, Karasuyama, Hatano, Takeuchi. Simultaneous safe screening of features and sample in doubly
 sparse modeling (ICML2016)

Quick sensitivity analysis

Okumura, Suzuki and Takeuchi. Quick sensitivity analysis for incremental data modification and its application to leave-one-out CV in linear classification problems (KDD2015)

Approximate model selection

Shibagaki, Suzuki, Karasuyama Takeuchi. Regularization path of cross-Validation error lower bounds (NIPS2015)

- L. El Ghaoui, V. Viallon and T. Rabbani. Safe feature elimination in sparse supervised learning (Pacific Journal of Optimization, 2012)
- J. Liu, Z. Zhao, J. Wang and J. Ye. Safe screening with variational inequalities and its application to Lasso (ICML2014)
- J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space (Journal of The Royal Statistical Society B, 2008)
- E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon. Gap safe screening rules for sparse multi-task and multi-class models (NIPS2015)
- H. Saigo, T. Uno and K. Tsuda. Mining complex genotypic features for predicting hiv-1 drug resistance (Bioinformatics, 2006)
- H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, K. Tsuda. gboost: a mathematical programming approach to graph classification and regression (Machine Learning, 2009)
- Hanada, Shibagaki, Sakuma, Takeuchi. Efficiently Bounding Optimal Solutions after Small Data Modification in Large-Scale Empirical Risk Minimization (arXiv, 2016)

٩,