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Question

Can we develop spectral graph theory for digraphs?

*  Spectral graph theory analyzes graph properties via
eigenpairs of associated matrices.

— Adjacency matrix, incidence matrix, Laplacian
* Applications

— Approximation to graph parameters (e.g, chromatic
number), community detection, visualization, etc.

* Well established for undirected graphs.



Question

Can we develop spectral graph theory for digraphs?

* Many real-world networks are directed!

— Web graph, Twitter followers, phone calls, paper citations,
food web, metabolic network.

* Extensions for digraphs are largely unexplored and
unsatisfying.



Laplacian

Graph G = (V, E)
Adjacency matrix: Ag
Degree matrix: Dg

Laplacian Lg := Dg — Ag
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Normalized Laplacian Lg := DgV/? Lg Dg/? =1 - Dg¥/2 Ag Dg /2



Interpretation of Laplacian

* Regard G as an electric circuit.
* An edge = a resistance of 1Q).
* Flow a current of b(u) ampere to each vertexu € V.

The voltages of vertices can be computed by solving Lcx=b
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Extensions for Digraphs

Existing extensions of Laplacians for digraphs:
1. Lg=Dgt—Ag

— Asymmetric and hence eigenpairs are complex-valued.
2. Chung’s Laplacian

— Assume strong connectivity. Need random walks to
interpret its eigenpairs.

Our contributions
1. Laplacian for digraphs whose eigenpairs can be
interpreted more combinatorially.

2. Algorithm that computes a small eigenvalue.
3. Applications to visualization and community detection.




Nonlinear Laplacian

Nonlinear Laplacian Ls: R">R" for a digraph G:
From a vector x& ", we compute Ls(x) as follows
1. Define an undirected graph as follows: for each arcu - v
* |f x(u) > x(v), add an (undirected) edge {u, v}.
* Otherwise, add self-loops.
Let L, be the Laplacian of H.
Output Lyx.




Interpretation

* Regard G = (V, E) as an electric circuit.
* An edge = a diode of 1Q (current flows only one way).
* Flow a current of b(u) ampere to each vertexu € V.

The voltages of vertices can be computed by solving L;(x) = b.
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Eigenpair of Nonlinear Laplacian

* Normalized Laplacian Lg: x — D512 L; (D5 V/2x)

* (A, v)is an eigenpair of L if L(v) =Av
— Trivial eigenpair: (A; =0, v,).

For any subspace U of positive dimension, M ,£L; has an
eigenpair. (M, = Projection matrix to U)

— Nontrivial eigenpair of L; exists by choosing U = v, .

Let A, be the smallest eigenvalue orthogonal to v;.



Algorithm

Computing A, is (likely to be) NP-hard.

Suppose we start the diffusion process
dx = —IlyL:(x)dt

from a vector in the subspace U = v, .

* X converges to an eigenvector orthogonal to v;.

xT Ty Lg (x)
xT x

 Rayleigh quotient R (x): = never increases

during the process.

= We can get a eigenvector of a small eigenvalue.



Visualization: Chung’s & Nonlinear Laplacian

Friendship network at a high school in lllinois

* u->Vv:uregardsv asa friend.

Reorder vertices according to the eigenvector computed by the
diffusion process.

Chung’s Laplacian Nonlinear Laplacian

Our method shows the directivity of the network more clearly.



Visualization: Interpretation

Laplacian for undirected graphs

: 2
A, = min Z{ulv}EE(x(u) — x(v)) s.t. x|l =1, x L v,
* Adjacent vertices are placed near.
Chung’s Laplacian

: 2
A, = min Zu—wEE(x(u) - x(v)) ./ dy st fxll =1, x L vy
e Important vertices (w.r.t. RW) are placed in the middle.
Nonlinear Laplacian

A, = minY.,_ver max(x(u) — x(v), 0)? s.t. ||| =1, x L vy.
* If x(u) £ x(v), then we get no penalty.
* |In particular, A, =0 when G is a DAG.



Community Detection: Undirected Graphs

S: Vertex set
vol(S): Total degree of vertices in S

cut(S): # of edges between S and V-S

cut(s)
min(Vol(s),vol(v-s))

The conductance ¢(S) of Sis
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Community Detection: Undirected Graphs

Cheeger’s inequality (‘70)
A,/2 £ min.d(S) £ V(2A,)

* We can efficiently compute S with ¢(S) < V(2A,) from v,.
 Still widely used.



Community Detection: Digraphs

S: Vertex set
vol(S): Total indegrees + outdegrees of verticesin S
cut*(S): # of arcs from S to V-S

min(Cut*(s),cutt(v-s))

(Directed) conductance ¢(S) of S is min(vol(s),vol(v-s))

S/, )




Community Detection: Digraphs

Cheeger’s inequality for digraphs
A,/2 £ min.d(S) £ 2VA,

* We can efficiently compute S with ¢(S) < 2VR(x) from x.



Community Detection: Digraphs

Reorder vertices according to the obtained eigenvector in the
high school network, and plot ¢ of each prefix set.
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* ¢ is low everywhere = directivity
* ¢ rapidly increases = community



Summary

Nonlinear Laplacian for digraphs

* Strong connectivity is not needed.

* Eigenpairs are combinatorially interpretable.

* Applications to visualization and community detection.

Future Work
* Approximation of A,.

* Finding a community in time proportional to its size.
e Other applications.



