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Question

Can	we	develop	spectral	graph	theory	for	digraphs?

• Spectral	graph	theory	analyzes	graph	properties	via	
eigenpairs	of	associated	matrices.
– Adjacency	matrix,	incidence	matrix,	Laplacian

• Applications
– Approximation	to	graph	parameters	(e.g,	chromatic	
number),	community	detection,	visualization,	etc.

• Well	established	for	undirected	graphs.



Question

Can	we	develop	spectral	graph	theory	for	digraphs?

• Many	real-world	networks	are	directed!
– Web	graph,	Twitter	followers,	phone	calls,	paper	citations,	

food	web,	metabolic	network.

• Extensions	for	digraphs	are	largely	unexplored and	
unsatisfying.



Laplacian

• Graph	G	=	(V,	E)
• Adjacency	matrix:	AG

• Degree	matrix:	DG

• Laplacian	LG :=	DG – AG

• Normalized	Laplacian	𝓛G :=	DG
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Interpretation	of	Laplacian

• Regard	G	as	an	electric	circuit.
• An	edge	=	a	resistance	of	1Ω.
• Flow	a	current	of	b(u)	ampere	to	each	vertex	u	∈ V.

The	voltages	of	vertices	can	be	computed	by	solving	LGx =	b
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Extensions	for	Digraphs

Existing	extensions	of	Laplacians	for	digraphs:
1. LG =	DG

+ – AG

– Asymmetric	and	hence	eigenpairs	are	complex-valued.
2. Chung’s	Laplacian
– Assume	strong	connectivity.	Need	random	walks	to	
interpret	its	eigenpairs.

Our	contributions
1. Laplacian	for	digraphs	whose	eigenpairs	can	be	

interpreted	more	combinatorially.
2. Algorithm	that	computes	a	small	eigenvalue.
3. Applications	to	visualization	and	community	detection.
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Nonlinear	Laplacian

Nonlinear	Laplacian	LG:	ℝn→ℝn for	a	digraph	G:
From	a	vector	x∈ℝn,	we	compute	LG(x)	as	follows
1. Define	an	undirected graph	as	follows:	for	each	arc	u	→ v
• If	x(u)	≥	x(v),	add	an	(undirected)	edge	{u,	v}.
• Otherwise,	add	self-loops.

2. Let	LH be	the	Laplacian	of	H.
3. Output	LHx.
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Interpretation

• Regard	G	=	(V,	E)	as	an	electric	circuit.
• An	edge	=	a	diode	of	1Ω	(current	flows	only	one	way).
• Flow	a	current	of	b(u)	ampere	to	each	vertex	u	∈ V.

The	voltages	of	vertices	can	be	computed	by	solving	LG(x)	=	b.
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Eigenpair	of	Nonlinear	Laplacian

• Normalized	Laplacian	𝓛G :	x⟼ DG
-1/2 LG	(DG

-1/2x)

• (λ,	v)	is	an	eigenpair of	𝓛G if	𝓛G(v)	=	λv
– Trivial	eigenpair:	(λ1 =	0,	v1).

⇒ Nontrivial	eigenpair	of	𝓛G		exists	by	choosing	U	=	v1⊥.
Let	λ2 be	the	smallest	eigenvalue	orthogonal	to	v1.

For	any	subspace	U	of	positive	dimension,	ΠU𝓛G has	an	
eigenpair.	(ΠU	=	Projection	matrix	to	U)



Algorithm

Computing	λ2 is	(likely	to	be)	NP-hard.

⇒We	can	get	a	eigenvector	of	a	small	eigenvalue.

Suppose we	start	the	diffusion	process	
𝑑𝒙 = −Π+ℒ- 𝒙 𝑑𝑡

from	a	vector	in	the	subspace	U	=	v1⊥.
• x converges	to	an	eigenvector	orthogonal	to	v1.

• Rayleigh	quotient	ℛ- 𝒙 := 𝒙𝑻23ℒ4(𝒙)
𝒙𝑻𝒙 never	increases	

during	the	process.



Visualization:	Chung’s	&	Nonlinear	Laplacian

Friendship	network	at	a	high	school	in	Illinois
• u	→ v:	u	regards	v	as	a	friend.
Reorder	vertices	according	to	the	eigenvector	computed	by	the	
diffusion	process.

Our	method	shows	the	directivity	of	the	network	more	clearly.

Chung’s	Laplacian Nonlinear	Laplacian



Visualization:	Interpretation

Laplacian	for	undirected	graphs

λ2 =	min ∑ 𝒙 𝑢 − 𝒙 𝑣 𝟐	�
=,? ∈A s.t.	‖x‖ =	1,	x	⊥ v1

• Adjacent	vertices	are	placed	near.
Chung’s	Laplacian

λ2 =	min ∑ 𝒙 𝑢 − 𝒙 𝑣 𝟐	𝜋=/𝑑=D�
=→?∈A s.t.	‖x‖ =	1,	x	⊥ v1.

• Important	vertices	(w.r.t.	RW)	are	placed	in	the	middle.
Nonlinear	Laplacian
λ2 =	min∑ max(𝒙 𝑢 − 𝒙 𝑣 , 0)𝟐	�

=→?∈A s.t.	‖x‖ =	1,	x	⊥ v1.
• If	x(u)	≤	x(v),	then	we	get	no	penalty.
• In	particular,	λ2 =	0	when	G	is	a	DAG.

F 𝒙 𝑢 − 𝒙 𝑣 𝟐	𝜋=/𝑑=D
�
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Community	Detection:	Undirected	Graphs

S:	Vertex	set
vol(S):	Total	degree	of	vertices	in	S
cut(S):	#	of	edges	between	S	and	V-S

The	conductance	φ(S)	of	S	is	 cut(J)
KLM	(vol J ,vol QRJ )

S

φ(S)	=	4/12	=	1/3

Small	conductance
→ Good	community



Community	Detection:	Undirected	Graphs

• We	can	efficiently	compute	S	with	φ(S)	≤	√(2λ2)		from	v2.
• Still	widely	used.

Cheeger’s inequality	(‘70)

λ2/2	≤	minSφ(S) ≤	√(2λ2)



Community	Detection:	Digraphs

S:	Vertex	set
vol(S):	Total	indegrees +	outdegrees of	vertices	in	S
cut+(S):	#	of	arcs	from	S	to	V-S

(Directed)	conductance	φ(S)	of	S	is	KLM	(cut
S J ,cutS(QRJ))

KLM	(vol J ,vol QRJ )

S

φ+(S)	=	2/12	=	1/6



Community	Detection:	Digraphs

• We	can	efficiently	compute	S	with	φ(S)	≤	2√𝓡G(x)		from	x.

Cheeger’s inequality	for	digraphs

λ2/2	≤	minSφ(S) ≤	2√λ2



Reorder	vertices	according	to	the	obtained	eigenvector	in	the	
high	school	network,	and	plot	φ of	each	prefix	set.

• φ is	low	everywhere	=	directivity
• φ rapidly	increases	=	community

Community	Detection:	Digraphs



Summary

Nonlinear	Laplacian	for	digraphs
• Strong	connectivity	is	not	needed.
• Eigenpairs	are	combinatorially interpretable.
• Applications	to	visualization	and	community	detection.

Future	Work
• Approximation	of	λ2.
• Finding	a	community	in	time	proportional	to	its	size.
• Other	applications.


