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現代の⼤規模グラフの例

2

ウェブグラフ などなど……ソーシャルグラフ
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グラフから得たい情報
1. 頂点の重要度
2. 頂点間の類似度・関連度
3. グラフの性質
4. ……

例：
▶ 検索サービス (Web	検索,	SNS	内の検索)
▶ ソーシャルメディア解析
テキストのみからは得にくい情報がある
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グラフ上のクエリ処理

1. 索引構築
– グラフからデータ構造を前計算しておき

2. クエリ応答
– それを⽤いて質問に⾼速に答える
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Index

𝑠", 𝑡" , 𝑠%, 𝑡% , …Graph
queries

answer
Reachable!



秋葉+, Compact	and	Scalable	Graph	Neighborhood	Sketching	(KDD’16)

グラフ上のクエリ処理

1. 索引構築
– グラフからデータ構造を前計算しておき

2. クエリ応答
– それを⽤いて質問に⾼速に答える

5

⽬標:	良好なトレードオフ

スケーラビリティ
前計算時間

データサイズ

クエリ性能
クエリ時間

精度
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グラフのインデクシング・スケッチング

これまでの多くの研究
▶ 特定の問題のみを扱う索引

– 例：最短経路のみ，近接中⼼性のみ
▶ 理論的な bound	なし

– 計算量 and/or	精度

All-Distances	Sketches	(ADS)	[Cohen’97,	Cohen’15]
▶ 様々な値を推定できる
▶ 精度保証有りで答えられる
▶ ほぼ線形時間で計算・データはほぼ線形空間

6

理論的には極めて理想的な性質
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ADS	で推定可能な指標

▶ Neighborhood	Function
▶ Shortest-Path	Distance
▶ Closeness	Centrality
▶ Closeness	Similarity
▶ Average	Distance,	Effective	Diameter
▶ Reverse	Ranking,	Reverse	𝑘-NN
▶ Continuous-Time	Influence
▶ …...
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ADS	の問題点

理論的には「ほぼ線形」であっても
実⽤的にはかなりサイズが⼤きい

例
▶7M	頂点，200M	辺のウェブグラフ
▶グラフ⾃体は 800MB
▶ADS	は 4GB（𝑘 = 16）
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控えめな精度パラメータでも

グラフ⾃体より随分⼤きい
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提案⼿法：Sketch	Retrieval	Shortcuts

ADS	より⼩さく，ADS	と同等の推定性能

Sketch	Retrieval	Shortcuts	(SRS)
▶ ADS	より⼩さいスケッチ：1/3	〜 1/10
▶ 各頂点の ADS を瞬時に復元：数ms
▶ 復元した ADS	を⽤いて同様の推定が可能
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⽬次
1:	イントロダクション（ここまで）

2:	All-Distances	Sketches	[Cohen+’15]

3:	Sketch	Retrieval	Shortcuts

4:	実験結果
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All-Distances	
Sketches	[Cohen’15]
Part	2
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前提
グラフ 𝐺 = 𝑉, 𝐸 を持っている
（無向グラフと仮定）

𝑛 = 𝑉 ,𝑚 = 𝐸

全頂点 𝑣 ∈ 𝑉 に対して，
スケッチ	𝐀𝐃𝐒 𝒗 を前計算＆保存する．
これを使って⾊々する．

12
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ADSの使い⽅
前計算
持っているグラフデータから，全頂点の ADS を計算する．
スケッチ:	 𝐀𝐃𝐒 𝒗 𝒗∈𝑽

使⽤
ADS	を使って⾊々な値を⾼速に推定する．
推定可能：Neighborhood	Function,	Shortest-Path	Distance,	Closeness	Centrality,	Closeness	Similarity,	
Average	Distance,	Effective	Diameter,	Reverse	Ranking,	Reverse	𝑘-NN,	Continuous-Time	Influence,	…...

13



秋葉+, Compact	and	Scalable	Graph	Neighborhood	Sketching	(KDD’16)

All-Distances	Sketchesの定義

ADS 1 =
2, 7, 6

14
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ADS 2 =
1, 3, 6, 7

ADS 3 =
2,5,6,7

ADS(𝑣) A∈B

ランク (後述)
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All-Distances	Sketchesの定義
定義 1

ADS 𝑣 ≔ 𝑢 𝑟 𝑢 < kHIJ ΦLM 𝑣

定義 2
任意の距離 𝑑 に対する近傍関数 𝑁P 𝑣 の
Bottom-kMinHash の和集合

15
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ランク（ハッシュ関数）
▶𝑟 𝑣 ：各頂点の乱数ハッシュ値 [0,	1]
「ランク」と呼びます

イメージ：
ランクの⼩さい頂点ほど偉い！
▶ 偉い＝保存されやすい

（Min-Hash	でもハッシュ値最低のやつが保存されていた）

16
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ADS(𝒗)の視覚的な説明

17

ADS 𝑣 = ⾃分より左下に点が
𝑘 個未満の頂点𝑘 = 3 の例

(MinHash 同様にパラメータがある）

𝒗 からの距離

ラ
ン
ク

性質
• ランク⼩さい⽅から 𝑘 個は必ず含まれる
• 近い⽅から 𝑘 個も必ず含まれる
• 遠くなってゆくほど含まれにくくなっていく

距離順に頂点を⾒て⾏って，
今まで⾒た頂点の中で
rank	が k	番⽬以内
ならADS	に含む
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ADS	のサイズ
ADS 𝑣 ≅ 𝑘 1 + ln𝑛 − ln𝑘 = 𝑂 𝑘 log𝑛

よって，合計の使⽤メモリは：
𝑂 𝑘𝑛 log 𝑛

𝑘 を定数とすると，スペースは頂点数にほぼ線形
（→	理論的には⾼いスケーラビリティ）

18

𝒌を⼤きくするほど
スペースを使う

しかし精度が良くなる（後述）
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ADSの計算
詳細は省略しますが難しくない
1. 枝刈り Dijkstra を全頂点から実⾏
2. 動的計画法

𝑂 𝑚 + 𝑛 log𝑘 	𝑘 log𝑛 時間で構築可
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ADS	による近接関数の推定
HIP	Estimator	[Cohen,	PODS’14]

𝑛PZ 𝑣 = [
1
𝜏M

�

M∈^_` A ,	Pa A,M bP

20

𝒗 からの距離

ラ
ン
ク 𝒖 𝑘 = 3

1
2

3𝜏M各	𝑢	について，
そいつより左で 𝑘 番⽬に

⼩さいランク
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ADS	による近接関数の推定
HIP	Estimator

𝑛PZ 𝑣 = [
1
𝜏M

�

M∈𝐀𝐃𝐒 𝒗 ,	Pa A,M bP

精度
𝐶𝑉 ≤ 1/ 2(𝑘 − 1)�

（CV	=	標準偏差 /	平均）

𝒗の ADS	だけから推定可



Sketch	Retrieval
Shortcuts（提案⼿法）
Part	3

22
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概要：Sketch	Retrieval	Shortcuts

アイディア

1. ADS	を新たなグラフ 𝐺^_` とみなす

2. 𝐺^_` から ADS(𝑣)を取得するアルゴリズムを定義

3. 取得アルゴリズムが正しく動作するために
必要⼗分な辺のみにする

ADS	の全体よりも遥かに⼩さいデータ構造となるが
ADS	が瞬時に取得できる！
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考え⽅：ADS	取得の難しさ
前提：頂点 v	の ADS(v)	を必要に応じて取り出したい
▶全頂点保存しておく→	容量多すぎ
▶前処理なし→	グラフ全体の探索が必要，遅すぎ

下図のように，「⾶び地」があるので，グラフ全体を調べる必要がある

うまく中間を取れないか？
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(a) A graph.
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(b) The vertices in A(1).

Figure 1: Examples of a graph and an ADS (k = 2).

The general idea underlying SRSs is to overcome the need
for a full search on a graph and realize the retrieval of an
ADS by a smaller search on another graph. Toward this
end, we consider a search that starts from a specified vertex
u and is allowed to visit only vertices in the ADS A(u). As
the number of vertices in an ADS is O(k log n) and usually
k log n is much smaller than n, we expect that this search is
much more e�cient than a full search.

To realize such searches for ADS retrieval, we first take a
di↵erent view of ADSs. We consider the ADSs of the graph
as another weighted graph, where each entry (v, �

uv

) 2 A(u)
corresponds to an edge from u to v with weight �

uv

(Fig-
ure 2a). In this “graph”, obviously, the vertices in an ADS
A(u) are directly connected from vertex u; thus, the above-
mentioned search from u can successfully visit all these ver-
tices (with only 1 hop).

Intuitively, for this purpose, this ADS graph has a consid-
erable number of redundant edges, and herein lies the con-
cept of our SRSs. In general, SRSs are yet another weighted
graph whose edges are selected from the ADS graph such
that the above-mentioned search can always success from
any vertex (Figure 2b). In other words, SRSs are defined
such that, when considering a subgraph induced by the ver-
tex set of A(u), the subgraph is connected, and the distances
from u to all these vertices remain unchanged (Figure 3). We
call this the reachability property.

This might seem like an intuitive and simple idea. How-
ever, to guarantee the above property, the definitions and
algorithms need to be designed carefully. Indeed, there is
a common misunderstanding about the definition of SRSs,
which is explained with a counterexample in Appendix A.

4.2 Definition and Properties

4.2.1 Definition

Now, we mathematically define SRSs. As with ADSs,
SRSs are defined for a graph G = (V,E), a trade-o↵ param-
eter k, and a random rank function r : V ! [0, 1].

Let � be the set of distances between any pair of ver-
tices, i.e. � = {d(u, v) | u, v 2 V }. We assume that � =
{d

0

, d
1

, . . . , d
h

}, where d
0

< d
1

< · · · < d
h

. Note that
d
0

= 0 and d
h

corresponds to the diameter of the graph.
We define B

i

(i = 0, 1, . . . , h) and C
i

,D
i

(i = 1, 2, . . . , h)
recursively as follows.

• B
0

(u) = ; and B
i

(u) = B
i�1

(u) [D
i

(u) for i > 0.

• C
i

(u, v) = {w 2 P (u, v) | w 2 A(u), v 2 B
i�1

(w)} .
• D

i

(u) = {(v, �
uv

) 2 A(u) | �
uv

= d
i

, C
i

(u, v) = ;} .

Intuitively, C
i

(u, v) corresponds to possible transit vertices
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(a) ADSs as a graph.
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(b) SRSs as a graph.

Figure 2: ADSs and SRSs as graphs.

from u to v for the reachability property, and B
i

(u) contains
ADS entries with distance at most d

i

that have no such
transit vertices. The SRSs are defined as follows.

Definition 4.1 (SRS): The sketch retrieval shortcuts (SRS)
of vertex u is B

h

(u).

Hereafter, for simplicity, we simply denote B
h

(u) by B(u).
Similarly to ADSs, we use the singular form to indicate the
sketch of a single vertex, and the plural form to indicate the
whole set of sketches for all vertices in a graph. For directed
graphs, as with ADSs, we distinguish between the forward

SRS

�!B (v) and the backward SRS

 �B (v). For the forward

SRS, we use the forward ADS
�!A(u) for defining C

i

. The
backward SRS is similarly defined on backward ADSs.

4.2.2 Reachability Property

The following lemma mathematically states the property
discussed in Section 4.1.

Lemma 4.2: If v 2 A(u), there exists a sequence of vertices

W(u, v) = (w
1

, w
2

, . . . , w
p

) such that, (1) w
1

= u, w
p

= v,
(2) w

i

2 A(u) for all 1  i  p, (3) w
i+1

2 B(w
i

) for all

1  i  p� 1, and (4)
P

p�1

i=1

d(w
i

, w
i+1

) = d(u, v).

Proof. We prove the lemma by mathematical induction on
the distance d(u, v). Since W(u, u) = (u) satisfies the above
conditions, it is true for distance zero. Now, we assume that
it holds for pairs within distance d

i�1

and prove it also holds
for pairs with distance d

i

. Let u, v be a pair of vertices such
that v 2 A(u) and d(u, v) = d

i

. If v 2 B(u), then W(u, v) =
(u, v) satisfies the conditions. Otherwise, v 62 D

i

(u), and
thus, C

i

(u, v) 6= ;. Let w 2 C
i

(u, v). Then, W(u, v) can be
obtained by appending v to W(u,w).

4.2.3 Theoretical Size Upper Bound

By definition, B(u) is a subset of A(u) for any vertex u.
Therefore, the upper bound of the expected size is as below.

Lemma 4.3: The expected size of B(u) is O(k log n).

In total, the theoretical upper bound of the expected space
usage of the all SRSs is O(nk log n). This bound is tight, as
it is ⇥(k log n) on some pathological cases such as a clique.
In practice, SRSs are much smaller than ADSs, as seen in
our experiments.

4.3 Retrieving an ADS from SRSs
The main feature of SRSs is to enable quick retrieval of an

ADS of any vertex. By obtaining an ADS, the various graph
properties can be estimated in exactly the same manner as
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考え⽅：制限された探索による ADS	取得

⽬標：ADS	取得時にちょっと計算をしてもいい
▶ グラフ全体の探索をしたくない

⼤規模なグラフのサイズに⽐例した計算量は無謀

▶ ADS	内の頂点のみを訪れる探索で取得できるか？
勿論，これは元のグラフ上では実現できない

25

Algorithm 1: Retrieving the ADS of vertex u

Procedure Retrieve-ADS(B, u, k)
1 A an empty all-distances sketch;
2 Q a priority queue with only one element (0, u);
3 while Q is not empty do

4 (�
uv

, v) Q.Pop;
5 if u 62 A and r(v) < ⇡(u, v) then

6 Add (v, �
uv

) to A;
7 for all (�

vw

, w) 2 B(v) do

8 Q.Push(�
uv

+ �

vw

, w);

9 return A;
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(a) Retrieving A(1).
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(b) Retrieving A(2).

Figure 3: Retrieval of ADSs from SRSs.

with a plain ADS as mentioned in Section 3.2. The retrieval
algorithm Retrieve-ADS is explained as Algorithm 1. Note
that, unless otherwise stated, sorting and priority queues on
tuples use the ascending order in lexicographic comparison.

To retrieve the ADS of vertex u, in general, the retrieval
algorithm conducts a pruned version of Dijkstra’s algorithm
from u on the SRSs such that it only visits vertices in A(u)
(Figure 3). We start with an empty sketch A, and entries
are added in increasing order of distances to build A. For
each visited vertex v with distance �

uv

, we check whether
(v, �

uv

) is necessary for A, i.e., whether (v, �
vu

) should be
included in A(u) (Line 5). As A contains all the entries
in A(v) with smaller distances at this point, ⇡(u, v) can
be computed from A. We can use a priority queue that
manages the top-k ranks in A to obtain ⇡(u, v) quickly. If
v is unnecessary for A, we prune the search and do nothing.
Otherwise, we add v to A and expand the search by entries in
B(v). Note that the lexicographic comparison in the priority
queue substantiates the distance tie-breaking rule discussed
in Section 2.2. Lemmas 4.4 and 4.5 state the correctness
and complexities of the algorithm.

Lemma 4.4: Retrieve-ADS returns A(u).

Proof Sketch. This is almost immediate from Lemma 4.2.
From the lemma, any vertex in A(u) can be reached with
correct distance on SRSs through other vertices in A(u).

Lemma 4.5: Retrieve-ADS runs in O(k2 log2 n log(k log n))
expected time and O(k2 log2 n) expected space.

Proof Sketch. Line 8 is executed for |B(v)| time for each ver-
tex v 2 A(u), and the expected size of B(u) and A(v) is
O(k log n). The priority queue takes O(log(k log n)) time to
push an element.

We stress that the retrieval time only has a logarithmic
dependence on the graph size. Therefore, ADSs can be e�-
ciently retrieved even on very large graphs.

Algorithm 2: Constructing SRSs from ADSs (naive).

Procedure Construct-SRS-Naive(G = (V,E),A, k)
1 B[u] ; for all u 2 V ;
2 T  {(�

uv

, v, u) | (v, �
uv

) 2 A(u)};
3 Sort T ;
4 for (�

uv

, v, u) 2 T do

5 A Retrieve-ADS(B, u, k);
6 if (v, �

uv

) 62 A then Add (v, �
uv

) to B[u];

7 return B;

5. CONSTRUCTION VIA ADS
Then, we study construction algorithms for SRSs. In

this section, we design algorithms that construct SRSs from
ADSs. First, we explain the basic algorithm with our retrieve-
and-verify principle, which is common to all of our construc-
tion algorithms. Second, we speed up the algorithm by in-
troducing eager entry generation.

5.1 Basic Algorithm
We know that SRSs are recursively defined, and the in-

clusion of pairs with longer distances depends on pairs with
shorter distances. Therefore, in general, we need to con-
struct SRSs in ascending order of distances. Algorithm 2
outlines algorithm Construct-SRS-Naive, our first construc-
tion algorithm. It examines the entries of all the ADSs in
ascending order of distances. We check each ADS entry to
determine whether it is necessary for the SRSs, and if so, we
add it.
The tricky part of this algorithm is that, even for con-

struction, we use the retrieval algorithm Retrieve-ADS. At
Line 5, algorithm Retrieve-ADS retrieves an “ADS” A from
the current incomplete SRSs B. As the current SRSs are in-
complete, A does not always match the correct ADS A(u).
However, interestingly, we can use A to check whether entry
(v, �

uv

) is necessary for the SRS of u as follows.

Lemma 5.1: At Line 5 in Algorithm 2, assuming B[w] con-
tains SRS entries with distances less than �

uv

for any w 2 V ,

(v, �
uv

) 62 A if and only if (v, �
uv

) 2 B(u).

Proof Sketch. Let �
uv

= d
i

. If (v, �
uv

) 2 A, then C
i

(u, v) 6=
;, and thus (v, �

uv

) 62 B(u). Otherwise, from Lemma 4.2,
(v, �

uv

) must be in B(u).

As a corollary of this lemma, we obtain the correctness of
the algorithm with mathematical induction on the distance.

Corollary 5.2: Construct-SRS-Naive returns {B(u)}
u2V

.

The time and space complexities of this algorithm can be
bounded as follows.

Lemma 5.3: Construct-SRS-Naive runs in O(nk3 log3 n log(
k log n)) expected time and O(nk log n) expected space.

Proof Sketch. The ADSs contain O(nk log n) entries, and
Retrieve-ADS is called for each entry.

5.2 Eager Entry Generation
Algorithm 3 describes another SRS construction algorithm

called Construct-SRS-Fast that shares the general idea, but
is faster than the previous algorithm. In the previous algo-
rithm, repeated call of Retrieve-ADS was the bottleneck. The
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Figure 1: Examples of a graph and an ADS (k = 2).

The general idea underlying SRSs is to overcome the need
for a full search on a graph and realize the retrieval of an
ADS by a smaller search on another graph. Toward this
end, we consider a search that starts from a specified vertex
u and is allowed to visit only vertices in the ADS A(u). As
the number of vertices in an ADS is O(k log n) and usually
k log n is much smaller than n, we expect that this search is
much more e�cient than a full search.

To realize such searches for ADS retrieval, we first take a
di↵erent view of ADSs. We consider the ADSs of the graph
as another weighted graph, where each entry (v, �

uv

) 2 A(u)
corresponds to an edge from u to v with weight �

uv

(Fig-
ure 2a). In this “graph”, obviously, the vertices in an ADS
A(u) are directly connected from vertex u; thus, the above-
mentioned search from u can successfully visit all these ver-
tices (with only 1 hop).

Intuitively, for this purpose, this ADS graph has a consid-
erable number of redundant edges, and herein lies the con-
cept of our SRSs. In general, SRSs are yet another weighted
graph whose edges are selected from the ADS graph such
that the above-mentioned search can always success from
any vertex (Figure 2b). In other words, SRSs are defined
such that, when considering a subgraph induced by the ver-
tex set of A(u), the subgraph is connected, and the distances
from u to all these vertices remain unchanged (Figure 3). We
call this the reachability property.

This might seem like an intuitive and simple idea. How-
ever, to guarantee the above property, the definitions and
algorithms need to be designed carefully. Indeed, there is
a common misunderstanding about the definition of SRSs,
which is explained with a counterexample in Appendix A.

4.2 Definition and Properties

4.2.1 Definition

Now, we mathematically define SRSs. As with ADSs,
SRSs are defined for a graph G = (V,E), a trade-o↵ param-
eter k, and a random rank function r : V ! [0, 1].

Let � be the set of distances between any pair of ver-
tices, i.e. � = {d(u, v) | u, v 2 V }. We assume that � =
{d

0

, d
1

, . . . , d
h

}, where d
0

< d
1

< · · · < d
h

. Note that
d
0

= 0 and d
h

corresponds to the diameter of the graph.
We define B

i

(i = 0, 1, . . . , h) and C
i

,D
i

(i = 1, 2, . . . , h)
recursively as follows.

• B
0

(u) = ; and B
i

(u) = B
i�1

(u) [D
i

(u) for i > 0.

• C
i

(u, v) = {w 2 P (u, v) | w 2 A(u), v 2 B
i�1

(w)} .
• D

i

(u) = {(v, �
uv

) 2 A(u) | �
uv

= d
i

, C
i

(u, v) = ;} .

Intuitively, C
i

(u, v) corresponds to possible transit vertices
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Figure 2: ADSs and SRSs as graphs.

from u to v for the reachability property, and B
i

(u) contains
ADS entries with distance at most d

i

that have no such
transit vertices. The SRSs are defined as follows.

Definition 4.1 (SRS): The sketch retrieval shortcuts (SRS)
of vertex u is B

h

(u).

Hereafter, for simplicity, we simply denote B
h

(u) by B(u).
Similarly to ADSs, we use the singular form to indicate the
sketch of a single vertex, and the plural form to indicate the
whole set of sketches for all vertices in a graph. For directed
graphs, as with ADSs, we distinguish between the forward

SRS

�!B (v) and the backward SRS

 �B (v). For the forward

SRS, we use the forward ADS
�!A(u) for defining C

i

. The
backward SRS is similarly defined on backward ADSs.

4.2.2 Reachability Property

The following lemma mathematically states the property
discussed in Section 4.1.

Lemma 4.2: If v 2 A(u), there exists a sequence of vertices

W(u, v) = (w
1

, w
2

, . . . , w
p

) such that, (1) w
1

= u, w
p

= v,
(2) w

i

2 A(u) for all 1  i  p, (3) w
i+1

2 B(w
i

) for all

1  i  p� 1, and (4)
P

p�1

i=1

d(w
i

, w
i+1

) = d(u, v).

Proof. We prove the lemma by mathematical induction on
the distance d(u, v). Since W(u, u) = (u) satisfies the above
conditions, it is true for distance zero. Now, we assume that
it holds for pairs within distance d

i�1

and prove it also holds
for pairs with distance d

i

. Let u, v be a pair of vertices such
that v 2 A(u) and d(u, v) = d

i

. If v 2 B(u), then W(u, v) =
(u, v) satisfies the conditions. Otherwise, v 62 D

i

(u), and
thus, C

i

(u, v) 6= ;. Let w 2 C
i

(u, v). Then, W(u, v) can be
obtained by appending v to W(u,w).

4.2.3 Theoretical Size Upper Bound

By definition, B(u) is a subset of A(u) for any vertex u.
Therefore, the upper bound of the expected size is as below.

Lemma 4.3: The expected size of B(u) is O(k log n).

In total, the theoretical upper bound of the expected space
usage of the all SRSs is O(nk log n). This bound is tight, as
it is ⇥(k log n) on some pathological cases such as a clique.
In practice, SRSs are much smaller than ADSs, as seen in
our experiments.

4.3 Retrieving an ADS from SRSs
The main feature of SRSs is to enable quick retrieval of an

ADS of any vertex. By obtaining an ADS, the various graph
properties can be estimated in exactly the same manner as
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考え⽅：グラフとしての ADS	と SRS

ADS	内の頂点のみを訪れる探索をしたい？
▶ ADS	をグラフだと思うと，これは成功する

当然．全 ADS	内の頂点に 1	hop	で到達．

▶ 無くても成功する辺がいっぱいある
▶必要最低限の辺に選別したのが SRS（提案⼿法）
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The general idea underlying SRSs is to overcome the need
for a full search on a graph and realize the retrieval of an
ADS by a smaller search on another graph. Toward this
end, we consider a search that starts from a specified vertex
u and is allowed to visit only vertices in the ADS A(u). As
the number of vertices in an ADS is O(k log n) and usually
k log n is much smaller than n, we expect that this search is
much more e�cient than a full search.

To realize such searches for ADS retrieval, we first take a
di↵erent view of ADSs. We consider the ADSs of the graph
as another weighted graph, where each entry (v, �

uv

) 2 A(u)
corresponds to an edge from u to v with weight �

uv

(Fig-
ure 2a). In this “graph”, obviously, the vertices in an ADS
A(u) are directly connected from vertex u; thus, the above-
mentioned search from u can successfully visit all these ver-
tices (with only 1 hop).

Intuitively, for this purpose, this ADS graph has a consid-
erable number of redundant edges, and herein lies the con-
cept of our SRSs. In general, SRSs are yet another weighted
graph whose edges are selected from the ADS graph such
that the above-mentioned search can always success from
any vertex (Figure 2b). In other words, SRSs are defined
such that, when considering a subgraph induced by the ver-
tex set of A(u), the subgraph is connected, and the distances
from u to all these vertices remain unchanged (Figure 3). We
call this the reachability property.

This might seem like an intuitive and simple idea. How-
ever, to guarantee the above property, the definitions and
algorithms need to be designed carefully. Indeed, there is
a common misunderstanding about the definition of SRSs,
which is explained with a counterexample in Appendix A.

4.2 Definition and Properties

4.2.1 Definition

Now, we mathematically define SRSs. As with ADSs,
SRSs are defined for a graph G = (V,E), a trade-o↵ param-
eter k, and a random rank function r : V ! [0, 1].

Let � be the set of distances between any pair of ver-
tices, i.e. � = {d(u, v) | u, v 2 V }. We assume that � =
{d

0

, d
1

, . . . , d
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}, where d
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. Note that
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0

= 0 and d
h

corresponds to the diameter of the graph.
We define B
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(i = 0, 1, . . . , h) and C
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,D
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recursively as follows.
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(u) = ; and B
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(u) [D
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(u) for i > 0.

• C
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(u, v) = {w 2 P (u, v) | w 2 A(u), v 2 B
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(w)} .
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(u) = {(v, �
uv

) 2 A(u) | �
uv
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(u, v) = ;} .

Intuitively, C
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from u to v for the reachability property, and B
i

(u) contains
ADS entries with distance at most d

i

that have no such
transit vertices. The SRSs are defined as follows.

Definition 4.1 (SRS): The sketch retrieval shortcuts (SRS)
of vertex u is B

h

(u).

Hereafter, for simplicity, we simply denote B
h

(u) by B(u).
Similarly to ADSs, we use the singular form to indicate the
sketch of a single vertex, and the plural form to indicate the
whole set of sketches for all vertices in a graph. For directed
graphs, as with ADSs, we distinguish between the forward

SRS

�!B (v) and the backward SRS

 �B (v). For the forward

SRS, we use the forward ADS
�!A(u) for defining C

i

. The
backward SRS is similarly defined on backward ADSs.

4.2.2 Reachability Property

The following lemma mathematically states the property
discussed in Section 4.1.

Lemma 4.2: If v 2 A(u), there exists a sequence of vertices

W(u, v) = (w
1

, w
2

, . . . , w
p

) such that, (1) w
1

= u, w
p

= v,
(2) w

i

2 A(u) for all 1  i  p, (3) w
i+1

2 B(w
i

) for all

1  i  p� 1, and (4)
P

p�1

i=1

d(w
i

, w
i+1

) = d(u, v).

Proof. We prove the lemma by mathematical induction on
the distance d(u, v). Since W(u, u) = (u) satisfies the above
conditions, it is true for distance zero. Now, we assume that
it holds for pairs within distance d

i�1

and prove it also holds
for pairs with distance d

i

. Let u, v be a pair of vertices such
that v 2 A(u) and d(u, v) = d

i

. If v 2 B(u), then W(u, v) =
(u, v) satisfies the conditions. Otherwise, v 62 D

i

(u), and
thus, C

i

(u, v) 6= ;. Let w 2 C
i

(u, v). Then, W(u, v) can be
obtained by appending v to W(u,w).

4.2.3 Theoretical Size Upper Bound

By definition, B(u) is a subset of A(u) for any vertex u.
Therefore, the upper bound of the expected size is as below.

Lemma 4.3: The expected size of B(u) is O(k log n).

In total, the theoretical upper bound of the expected space
usage of the all SRSs is O(nk log n). This bound is tight, as
it is ⇥(k log n) on some pathological cases such as a clique.
In practice, SRSs are much smaller than ADSs, as seen in
our experiments.

4.3 Retrieving an ADS from SRSs
The main feature of SRSs is to enable quick retrieval of an

ADS of any vertex. By obtaining an ADS, the various graph
properties can be estimated in exactly the same manner as

Algorithm 1: Retrieving the ADS of vertex u

Procedure Retrieve-ADS(B, u, k)
1 A an empty all-distances sketch;
2 Q a priority queue with only one element (0, u);
3 while Q is not empty do

4 (�
uv

, v) Q.Pop;
5 if u 62 A and r(v) < ⇡(u, v) then

6 Add (v, �
uv

) to A;
7 for all (�

vw

, w) 2 B(v) do

8 Q.Push(�
uv

+ �

vw

, w);

9 return A;
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Figure 3: Retrieval of ADSs from SRSs.

with a plain ADS as mentioned in Section 3.2. The retrieval
algorithm Retrieve-ADS is explained as Algorithm 1. Note
that, unless otherwise stated, sorting and priority queues on
tuples use the ascending order in lexicographic comparison.

To retrieve the ADS of vertex u, in general, the retrieval
algorithm conducts a pruned version of Dijkstra’s algorithm
from u on the SRSs such that it only visits vertices in A(u)
(Figure 3). We start with an empty sketch A, and entries
are added in increasing order of distances to build A. For
each visited vertex v with distance �

uv

, we check whether
(v, �

uv

) is necessary for A, i.e., whether (v, �
vu

) should be
included in A(u) (Line 5). As A contains all the entries
in A(v) with smaller distances at this point, ⇡(u, v) can
be computed from A. We can use a priority queue that
manages the top-k ranks in A to obtain ⇡(u, v) quickly. If
v is unnecessary for A, we prune the search and do nothing.
Otherwise, we add v to A and expand the search by entries in
B(v). Note that the lexicographic comparison in the priority
queue substantiates the distance tie-breaking rule discussed
in Section 2.2. Lemmas 4.4 and 4.5 state the correctness
and complexities of the algorithm.

Lemma 4.4: Retrieve-ADS returns A(u).

Proof Sketch. This is almost immediate from Lemma 4.2.
From the lemma, any vertex in A(u) can be reached with
correct distance on SRSs through other vertices in A(u).

Lemma 4.5: Retrieve-ADS runs in O(k2 log2 n log(k log n))
expected time and O(k2 log2 n) expected space.

Proof Sketch. Line 8 is executed for |B(v)| time for each ver-
tex v 2 A(u), and the expected size of B(u) and A(v) is
O(k log n). The priority queue takes O(log(k log n)) time to
push an element.

We stress that the retrieval time only has a logarithmic
dependence on the graph size. Therefore, ADSs can be e�-
ciently retrieved even on very large graphs.

Algorithm 2: Constructing SRSs from ADSs (naive).

Procedure Construct-SRS-Naive(G = (V,E),A, k)
1 B[u] ; for all u 2 V ;
2 T  {(�

uv

, v, u) | (v, �
uv

) 2 A(u)};
3 Sort T ;
4 for (�

uv

, v, u) 2 T do

5 A Retrieve-ADS(B, u, k);
6 if (v, �

uv

) 62 A then Add (v, �
uv

) to B[u];

7 return B;

5. CONSTRUCTION VIA ADS
Then, we study construction algorithms for SRSs. In

this section, we design algorithms that construct SRSs from
ADSs. First, we explain the basic algorithm with our retrieve-
and-verify principle, which is common to all of our construc-
tion algorithms. Second, we speed up the algorithm by in-
troducing eager entry generation.

5.1 Basic Algorithm
We know that SRSs are recursively defined, and the in-

clusion of pairs with longer distances depends on pairs with
shorter distances. Therefore, in general, we need to con-
struct SRSs in ascending order of distances. Algorithm 2
outlines algorithm Construct-SRS-Naive, our first construc-
tion algorithm. It examines the entries of all the ADSs in
ascending order of distances. We check each ADS entry to
determine whether it is necessary for the SRSs, and if so, we
add it.
The tricky part of this algorithm is that, even for con-

struction, we use the retrieval algorithm Retrieve-ADS. At
Line 5, algorithm Retrieve-ADS retrieves an “ADS” A from
the current incomplete SRSs B. As the current SRSs are in-
complete, A does not always match the correct ADS A(u).
However, interestingly, we can use A to check whether entry
(v, �

uv

) is necessary for the SRS of u as follows.

Lemma 5.1: At Line 5 in Algorithm 2, assuming B[w] con-
tains SRS entries with distances less than �

uv

for any w 2 V ,

(v, �
uv

) 62 A if and only if (v, �
uv

) 2 B(u).

Proof Sketch. Let �
uv

= d
i

. If (v, �
uv

) 2 A, then C
i

(u, v) 6=
;, and thus (v, �

uv

) 62 B(u). Otherwise, from Lemma 4.2,
(v, �

uv

) must be in B(u).

As a corollary of this lemma, we obtain the correctness of
the algorithm with mathematical induction on the distance.

Corollary 5.2: Construct-SRS-Naive returns {B(u)}
u2V

.

The time and space complexities of this algorithm can be
bounded as follows.

Lemma 5.3: Construct-SRS-Naive runs in O(nk3 log3 n log(
k log n)) expected time and O(nk log n) expected space.

Proof Sketch. The ADSs contain O(nk log n) entries, and
Retrieve-ADS is called for each entry.

5.2 Eager Entry Generation
Algorithm 3 describes another SRS construction algorithm

called Construct-SRS-Fast that shares the general idea, but
is faster than the previous algorithm. In the previous algo-
rithm, repeated call of Retrieve-ADS was the bottleneck. The
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アルゴリズム：SRS から ADS	を取得

▶ SRS	上で Dijkstra のアルゴリズムを実⾏する

▶ ただし，ADS	に含まれない頂点は訪問しない
重要：ADS	に含まれるか否かは探索中の情報のみで判断可能！

▶ 𝑂g 𝑘% 時間で動作
グラフサイズの依存が polylog!
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Algorithm 1: Retrieving the ADS of vertex u

Procedure Retrieve-ADS(B, u, k)
1 A an empty all-distances sketch;
2 Q a priority queue with only one element (0, u);
3 while Q is not empty do

4 (�
uv

, v) Q.Pop;
5 if u 62 A and r(v) < ⇡(u, v) then

6 Add (v, �
uv

) to A;
7 for all (�

vw

, w) 2 B(v) do

8 Q.Push(�
uv

+ �

vw

, w);

9 return A;
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with a plain ADS as mentioned in Section 3.2. The retrieval
algorithm Retrieve-ADS is explained as Algorithm 1. Note
that, unless otherwise stated, sorting and priority queues on
tuples use the ascending order in lexicographic comparison.

To retrieve the ADS of vertex u, in general, the retrieval
algorithm conducts a pruned version of Dijkstra’s algorithm
from u on the SRSs such that it only visits vertices in A(u)
(Figure 3). We start with an empty sketch A, and entries
are added in increasing order of distances to build A. For
each visited vertex v with distance �

uv

, we check whether
(v, �

uv

) is necessary for A, i.e., whether (v, �
vu

) should be
included in A(u) (Line 5). As A contains all the entries
in A(v) with smaller distances at this point, ⇡(u, v) can
be computed from A. We can use a priority queue that
manages the top-k ranks in A to obtain ⇡(u, v) quickly. If
v is unnecessary for A, we prune the search and do nothing.
Otherwise, we add v to A and expand the search by entries in
B(v). Note that the lexicographic comparison in the priority
queue substantiates the distance tie-breaking rule discussed
in Section 2.2. Lemmas 4.4 and 4.5 state the correctness
and complexities of the algorithm.

Lemma 4.4: Retrieve-ADS returns A(u).

Proof Sketch. This is almost immediate from Lemma 4.2.
From the lemma, any vertex in A(u) can be reached with
correct distance on SRSs through other vertices in A(u).

Lemma 4.5: Retrieve-ADS runs in O(k2 log2 n log(k log n))
expected time and O(k2 log2 n) expected space.

Proof Sketch. Line 8 is executed for |B(v)| time for each ver-
tex v 2 A(u), and the expected size of B(u) and A(v) is
O(k log n). The priority queue takes O(log(k log n)) time to
push an element.

We stress that the retrieval time only has a logarithmic
dependence on the graph size. Therefore, ADSs can be e�-
ciently retrieved even on very large graphs.

Algorithm 2: Constructing SRSs from ADSs (naive).

Procedure Construct-SRS-Naive(G = (V,E),A, k)
1 B[u] ; for all u 2 V ;
2 T  {(�
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, v, u) | (v, �
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) 2 A(u)};
3 Sort T ;
4 for (�
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, v, u) 2 T do

5 A Retrieve-ADS(B, u, k);
6 if (v, �

uv

) 62 A then Add (v, �
uv

) to B[u];

7 return B;

5. CONSTRUCTION VIA ADS
Then, we study construction algorithms for SRSs. In

this section, we design algorithms that construct SRSs from
ADSs. First, we explain the basic algorithm with our retrieve-
and-verify principle, which is common to all of our construc-
tion algorithms. Second, we speed up the algorithm by in-
troducing eager entry generation.

5.1 Basic Algorithm
We know that SRSs are recursively defined, and the in-

clusion of pairs with longer distances depends on pairs with
shorter distances. Therefore, in general, we need to con-
struct SRSs in ascending order of distances. Algorithm 2
outlines algorithm Construct-SRS-Naive, our first construc-
tion algorithm. It examines the entries of all the ADSs in
ascending order of distances. We check each ADS entry to
determine whether it is necessary for the SRSs, and if so, we
add it.
The tricky part of this algorithm is that, even for con-

struction, we use the retrieval algorithm Retrieve-ADS. At
Line 5, algorithm Retrieve-ADS retrieves an “ADS” A from
the current incomplete SRSs B. As the current SRSs are in-
complete, A does not always match the correct ADS A(u).
However, interestingly, we can use A to check whether entry
(v, �

uv

) is necessary for the SRS of u as follows.

Lemma 5.1: At Line 5 in Algorithm 2, assuming B[w] con-
tains SRS entries with distances less than �

uv

for any w 2 V ,

(v, �
uv

) 62 A if and only if (v, �
uv

) 2 B(u).

Proof Sketch. Let �
uv

= d
i

. If (v, �
uv

) 2 A, then C
i

(u, v) 6=
;, and thus (v, �

uv

) 62 B(u). Otherwise, from Lemma 4.2,
(v, �

uv

) must be in B(u).

As a corollary of this lemma, we obtain the correctness of
the algorithm with mathematical induction on the distance.

Corollary 5.2: Construct-SRS-Naive returns {B(u)}
u2V

.

The time and space complexities of this algorithm can be
bounded as follows.

Lemma 5.3: Construct-SRS-Naive runs in O(nk3 log3 n log(
k log n)) expected time and O(nk log n) expected space.

Proof Sketch. The ADSs contain O(nk log n) entries, and
Retrieve-ADS is called for each entry.

5.2 Eager Entry Generation
Algorithm 3 describes another SRS construction algorithm

called Construct-SRS-Fast that shares the general idea, but
is faster than the previous algorithm. In the previous algo-
rithm, repeated call of Retrieve-ADS was the bottleneck. The

Algorithm 1: Retrieving the ADS of vertex u

Procedure Retrieve-ADS(B, u, k)
1 A an empty all-distances sketch;
2 Q a priority queue with only one element (0, u);
3 while Q is not empty do

4 (�
uv

, v) Q.Pop;
5 if u 62 A and r(v) < ⇡(u, v) then

6 Add (v, �
uv

) to A;
7 for all (�

vw

, w) 2 B(v) do

8 Q.Push(�
uv

+ �

vw

, w);

9 return A;

1

0.96

2

0.19

7

0.18

10

0.26

3

0.81

5

0.49

6

0.13

9

0.28

4

0.32

8

0.83

2

(a) Retrieving A(1).

1

0.96

2

0.19

7

0.18

10

0.26

3

0.81

5

0.49

6

0.13

9

0.28

4

0.32

8

0.83

(b) Retrieving A(2).

Figure 3: Retrieval of ADSs from SRSs.

with a plain ADS as mentioned in Section 3.2. The retrieval
algorithm Retrieve-ADS is explained as Algorithm 1. Note
that, unless otherwise stated, sorting and priority queues on
tuples use the ascending order in lexicographic comparison.

To retrieve the ADS of vertex u, in general, the retrieval
algorithm conducts a pruned version of Dijkstra’s algorithm
from u on the SRSs such that it only visits vertices in A(u)
(Figure 3). We start with an empty sketch A, and entries
are added in increasing order of distances to build A. For
each visited vertex v with distance �

uv

, we check whether
(v, �

uv

) is necessary for A, i.e., whether (v, �
vu

) should be
included in A(u) (Line 5). As A contains all the entries
in A(v) with smaller distances at this point, ⇡(u, v) can
be computed from A. We can use a priority queue that
manages the top-k ranks in A to obtain ⇡(u, v) quickly. If
v is unnecessary for A, we prune the search and do nothing.
Otherwise, we add v to A and expand the search by entries in
B(v). Note that the lexicographic comparison in the priority
queue substantiates the distance tie-breaking rule discussed
in Section 2.2. Lemmas 4.4 and 4.5 state the correctness
and complexities of the algorithm.

Lemma 4.4: Retrieve-ADS returns A(u).

Proof Sketch. This is almost immediate from Lemma 4.2.
From the lemma, any vertex in A(u) can be reached with
correct distance on SRSs through other vertices in A(u).

Lemma 4.5: Retrieve-ADS runs in O(k2 log2 n log(k log n))
expected time and O(k2 log2 n) expected space.

Proof Sketch. Line 8 is executed for |B(v)| time for each ver-
tex v 2 A(u), and the expected size of B(u) and A(v) is
O(k log n). The priority queue takes O(log(k log n)) time to
push an element.

We stress that the retrieval time only has a logarithmic
dependence on the graph size. Therefore, ADSs can be e�-
ciently retrieved even on very large graphs.

Algorithm 2: Constructing SRSs from ADSs (naive).

Procedure Construct-SRS-Naive(G = (V,E),A, k)
1 B[u] ; for all u 2 V ;
2 T  {(�

uv

, v, u) | (v, �
uv

) 2 A(u)};
3 Sort T ;
4 for (�

uv

, v, u) 2 T do

5 A Retrieve-ADS(B, u, k);
6 if (v, �

uv

) 62 A then Add (v, �
uv

) to B[u];

7 return B;

5. CONSTRUCTION VIA ADS
Then, we study construction algorithms for SRSs. In

this section, we design algorithms that construct SRSs from
ADSs. First, we explain the basic algorithm with our retrieve-
and-verify principle, which is common to all of our construc-
tion algorithms. Second, we speed up the algorithm by in-
troducing eager entry generation.

5.1 Basic Algorithm
We know that SRSs are recursively defined, and the in-

clusion of pairs with longer distances depends on pairs with
shorter distances. Therefore, in general, we need to con-
struct SRSs in ascending order of distances. Algorithm 2
outlines algorithm Construct-SRS-Naive, our first construc-
tion algorithm. It examines the entries of all the ADSs in
ascending order of distances. We check each ADS entry to
determine whether it is necessary for the SRSs, and if so, we
add it.
The tricky part of this algorithm is that, even for con-

struction, we use the retrieval algorithm Retrieve-ADS. At
Line 5, algorithm Retrieve-ADS retrieves an “ADS” A from
the current incomplete SRSs B. As the current SRSs are in-
complete, A does not always match the correct ADS A(u).
However, interestingly, we can use A to check whether entry
(v, �

uv

) is necessary for the SRS of u as follows.

Lemma 5.1: At Line 5 in Algorithm 2, assuming B[w] con-
tains SRS entries with distances less than �

uv

for any w 2 V ,

(v, �
uv

) 62 A if and only if (v, �
uv

) 2 B(u).

Proof Sketch. Let �
uv

= d
i

. If (v, �
uv

) 2 A, then C
i

(u, v) 6=
;, and thus (v, �

uv

) 62 B(u). Otherwise, from Lemma 4.2,
(v, �

uv

) must be in B(u).

As a corollary of this lemma, we obtain the correctness of
the algorithm with mathematical induction on the distance.

Corollary 5.2: Construct-SRS-Naive returns {B(u)}
u2V

.

The time and space complexities of this algorithm can be
bounded as follows.

Lemma 5.3: Construct-SRS-Naive runs in O(nk3 log3 n log(
k log n)) expected time and O(nk log n) expected space.

Proof Sketch. The ADSs contain O(nk log n) entries, and
Retrieve-ADS is called for each entry.

5.2 Eager Entry Generation
Algorithm 3 describes another SRS construction algorithm

called Construct-SRS-Fast that shares the general idea, but
is faster than the previous algorithm. In the previous algo-
rithm, repeated call of Retrieve-ADS was the bottleneck. The
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アルゴリズム：グラフから SRS 構築

▶ 全 ADS	を距離が短い順にソート

▶ 各エントリを SRS	に⼊れるかを判定
SRS	を⼩さい距離の部分から構築してゆく

▶ 判定には取得アルゴリズムを利⽤
取得によって既にそのエントリが得られるのであれば必要ない
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Algorithm 1: Retrieving the ADS of vertex u

Procedure Retrieve-ADS(B, u, k)
1 A an empty all-distances sketch;
2 Q a priority queue with only one element (0, u);
3 while Q is not empty do
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with a plain ADS as mentioned in Section 3.2. The retrieval
algorithm Retrieve-ADS is explained as Algorithm 1. Note
that, unless otherwise stated, sorting and priority queues on
tuples use the ascending order in lexicographic comparison.

To retrieve the ADS of vertex u, in general, the retrieval
algorithm conducts a pruned version of Dijkstra’s algorithm
from u on the SRSs such that it only visits vertices in A(u)
(Figure 3). We start with an empty sketch A, and entries
are added in increasing order of distances to build A. For
each visited vertex v with distance �

uv

, we check whether
(v, �

uv

) is necessary for A, i.e., whether (v, �
vu

) should be
included in A(u) (Line 5). As A contains all the entries
in A(v) with smaller distances at this point, ⇡(u, v) can
be computed from A. We can use a priority queue that
manages the top-k ranks in A to obtain ⇡(u, v) quickly. If
v is unnecessary for A, we prune the search and do nothing.
Otherwise, we add v to A and expand the search by entries in
B(v). Note that the lexicographic comparison in the priority
queue substantiates the distance tie-breaking rule discussed
in Section 2.2. Lemmas 4.4 and 4.5 state the correctness
and complexities of the algorithm.

Lemma 4.4: Retrieve-ADS returns A(u).

Proof Sketch. This is almost immediate from Lemma 4.2.
From the lemma, any vertex in A(u) can be reached with
correct distance on SRSs through other vertices in A(u).

Lemma 4.5: Retrieve-ADS runs in O(k2 log2 n log(k log n))
expected time and O(k2 log2 n) expected space.

Proof Sketch. Line 8 is executed for |B(v)| time for each ver-
tex v 2 A(u), and the expected size of B(u) and A(v) is
O(k log n). The priority queue takes O(log(k log n)) time to
push an element.

We stress that the retrieval time only has a logarithmic
dependence on the graph size. Therefore, ADSs can be e�-
ciently retrieved even on very large graphs.

Algorithm 2: Constructing SRSs from ADSs (naive).

Procedure Construct-SRS-Naive(G = (V,E),A, k)
1 B[u] ; for all u 2 V ;
2 T  {(�

uv

, v, u) | (v, �
uv

) 2 A(u)};
3 Sort T ;
4 for (�

uv

, v, u) 2 T do

5 A Retrieve-ADS(B, u, k);
6 if (v, �

uv

) 62 A then Add (v, �
uv

) to B[u];

7 return B;

5. CONSTRUCTION VIA ADS
Then, we study construction algorithms for SRSs. In

this section, we design algorithms that construct SRSs from
ADSs. First, we explain the basic algorithm with our retrieve-
and-verify principle, which is common to all of our construc-
tion algorithms. Second, we speed up the algorithm by in-
troducing eager entry generation.

5.1 Basic Algorithm
We know that SRSs are recursively defined, and the in-

clusion of pairs with longer distances depends on pairs with
shorter distances. Therefore, in general, we need to con-
struct SRSs in ascending order of distances. Algorithm 2
outlines algorithm Construct-SRS-Naive, our first construc-
tion algorithm. It examines the entries of all the ADSs in
ascending order of distances. We check each ADS entry to
determine whether it is necessary for the SRSs, and if so, we
add it.
The tricky part of this algorithm is that, even for con-

struction, we use the retrieval algorithm Retrieve-ADS. At
Line 5, algorithm Retrieve-ADS retrieves an “ADS” A from
the current incomplete SRSs B. As the current SRSs are in-
complete, A does not always match the correct ADS A(u).
However, interestingly, we can use A to check whether entry
(v, �

uv

) is necessary for the SRS of u as follows.

Lemma 5.1: At Line 5 in Algorithm 2, assuming B[w] con-
tains SRS entries with distances less than �
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for any w 2 V ,

(v, �
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) 62 A if and only if (v, �
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;, and thus (v, �
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) 62 B(u). Otherwise, from Lemma 4.2,
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) must be in B(u).

As a corollary of this lemma, we obtain the correctness of
the algorithm with mathematical induction on the distance.

Corollary 5.2: Construct-SRS-Naive returns {B(u)}
u2V

.

The time and space complexities of this algorithm can be
bounded as follows.

Lemma 5.3: Construct-SRS-Naive runs in O(nk3 log3 n log(
k log n)) expected time and O(nk log n) expected space.

Proof Sketch. The ADSs contain O(nk log n) entries, and
Retrieve-ADS is called for each entry.

5.2 Eager Entry Generation
Algorithm 3 describes another SRS construction algorithm

called Construct-SRS-Fast that shares the general idea, but
is faster than the previous algorithm. In the previous algo-
rithm, repeated call of Retrieve-ADS was the bottleneck. The

構築時に取得の
アルゴリズムを利⽤

枝刈りラベリング法
[Akiba+,SIGMOD’13]と類似
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省略すること
定義と性質
▶ SRS	の数学的定義とその性質

構築アルゴリズム
▶ より⾼速な構築アルゴリズム
▶ ADS	を経由しない省メモリな構築アルゴリズム
▶ 並列化

更なるサイズ縮減
▶ 元グラフでの近傍は除去する
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実験結果
Part	4
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サイズ
▶ ADS：通常の ADS
▶ ADS-c：ADS	+	LZ 圧縮 (snappy)

▶ SRS：通常の SRS
▶ SRS-i ：SRS	+	implicit	neighbor

データ：com-DBLP	(|𝑉| = 0.3M,	|𝐸| = 2M)
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 4  16  64  256
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▶ 汎⽤圧縮アルゴリズムはほぼ効果なし
各 ADS	が短く，反復が少ないため

▶ SRS	は 𝑘 が⼤きいほど ADS	との差が⼤きい
𝑘 = 256で 10 倍以上の差
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復元時間
▶ ADS-c：ADS	+	LZ 圧縮 (snappy)

▶ SRS：通常の SRS
▶ SRS-i ：SRS	+	implicit	neighbor

データ：com-DBLP	(|𝑉| = 0.3M,	|𝐸| = 2M)

▶ ⼤きい 𝑘 でも数 ms 程度
𝑘 = 256で 8ms 程度

▶ 復元後は通常の ADS	と同様に指標の推定が可能
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構築時間
▶ ADS-c：ADS	+	LZ 圧縮 (snappy)

▶ SRS：ADS	経由の構築
▶ SRS-d	：直接構築（省スペース）

データ：com-DBLP	(|𝑉| = 0.3M,	|𝐸| = 2M)

スケーラビリティ
▶ 3M頂点，200M辺のソーシャルグラフ
▶ 7M頂点，200M辺のウェブグラフ
▶ 数時間〜10時間 (𝑘=16)
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まとめ
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まとめ
背景：All-Distances	Sketches	の有⽤性と課題
▶ 理論的には優れた性質を持つグラフスケッチ
▶ しかし，実⽤的には，サイズがとても⼤きい

提案⼿法：Sketch	Retrieval	Shortcuts
▶ ADS	より⼩さいスケッチ：1/3	〜 1/10
▶ 各頂点の ADS を瞬時に復元：数ms
▶ 復元した ADS	を⽤いて元と同様の推定が可能
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