Compact and Scalable

 Graph Neighborhood Sketching （KDD16）秋葉 拓哉（Preferred Networks）矢野 洋祐（リクルートホールディングス）

ウェブグラフ

ソーシャルグラフ

などなど．．．．．．

1．頂点の重要度
2．頂点間の類似度•関連度
3．グラフの性質
4．．．．．．．

例：

- 検索サービス（Web 検索，SNS 内の検索）
- ソーシャルメディア解析

テキストのみからは得にくい情報がある

グラフ上のクエリ処理

1．索引構築
 －グラフからデータ構造を前計算しておき
 2．クエリ応答
 －それを用いて質問に高速に答える

グラフ上のクエリ処理

1．索引構築
 －グラフからデータ構造を前計算しておき
 2．クエリ応答
 －それを用いて質問に高速に答える

目標：良好なトレードオフ

グラフのインデクシング・スケッチング

これまでの多くの研究

- 特定の問題のみを扱う索引
- 例：最短経路のみ，近接中心性のみ

理論的な bound なし
－計算量 and／or 精度

All－Distances Sketches（ADS）［Cohen＇97，Cohen＇15］

- 様々な値を推定できる
- 精度保証有りで答えられる
- ほぼ線形時間で計算・データはほぼ線形空間

理論的には極めて理想的な性質

ADS で推定可能な指標

－Neighborhood Function
－Shortest－Path Distance
－Closeness Centrality
－Closeness Similarity
－Average Distance，Effective Diameter
－Reverse Ranking，Reverse k－NN
－Continuous－Time Influence

ADS の問題点

理論的には「ほぼ線形」であっても実用的にはかなりサイズが大きい

例
－7M 頂点，200M 辺のウェブグラフ グラフ自体は 800MB
－ADS は 4GB $(k=16)$
 グラフ自体より随分大きい

提案手法：Sketch Retrieval Shortcuts

ADS より小さく，ADS と同等の推定性能

Sketch Retrieval Shortcuts（SRS）

－ADS より小さいスケッチ：1／3～1／10
各頂点のADSを瞬時に復元：数 ms
－復元したADS を用いて同様の推定が可能

1：イントロダクション（こ己まし）

2：All－Distances Sketches［cohen＋15］

3：Sketch Retrieval Shortcuts

4：実験結果

All-Distances
 Sketches [cohen'15]

Part 2

前提

グラフ $G=(V, E)$ を持っている
（無向グラフと仮定）
$n=|V|, m=|E|$

全頂点 $v \in V$ に対して，
スケツチ $\operatorname{ADS}(v)$ を前計算 \＆保存する。
これを使って色々する．

ADS の使い方

前計算

持っているグラフデータから，全頂点のADSを計算する． スケッチ：$\{\operatorname{ADS}(\boldsymbol{v})\}_{v \in V}$

使用

ADS を使つて色々な値を高速に推定する．

推定可能：Neighborhood Function，Shortest－Path Distance，Closeness Centrality，Closeness Similarity， Average Distance，Effective Diameter，Reverse Ranking，Reverse k－NN，Continuous－Time Influence，．．．．．．

All－Distances Sketches の定域

ランク（㬋述）

$\operatorname{ADS}(1)=$
$\{2,7,6\}$

$\operatorname{ADS}(2)=$
$\{1,3,6,7\}$

$\operatorname{ADS}(3)=$
\｛2，5，6，7\}

All－Distances Sketches の定域

定義 1

$$
\operatorname{ADS}(v):=\left\{u \mid r(u)<\operatorname{k}_{r}^{\operatorname{th}}\left(\Phi_{<u}(v)\right)\right\}
$$

定義 2
任意の距離 d に対する近傍関数 $N_{d}(v)$ の Bottom－k MinHash の和集合

ランク（ハッシユ䔵数）

$r(v)$ ：各頂点の乱数ハッシユ値 $[0,1]$「ランク」と呼びます

イメージ：
ランクの小さい頂点ほど偉い！
偉い＝保存されやすい
（Min－Hashでも八ッシュ値最低のやつが保存されていた）

$\operatorname{ADS}(v)$ の視覚的な説明

$$
k=3 \text { の例 }
$$

（MinHash 同様にパラメータがある）
性質

- ランク小さい方から k 個は必ず含まれる
- 近い方から k 個も必ず含まれる
- 遠くなってゆくほど含まれにくくなっていく

ADS のサイズ

$$
|\operatorname{ADS}(v)| \cong k(1+\ln n-\ln k)=O(k \log n)
$$

よって，合計の使用メモリは： $O(k n \log n)$
k を定数とすると，スペースは頂点数にほぼ線形 （ \rightarrow 理論的には高いスケーラビリティ）

ADS の計算

詳細は省略しますが難しくない

 1．枝刈り Dijkstra を全頂点から実行2．動的計画法
$O((m+n \log k) k \log n)$ 時間で構築可

ADS による近接関数の推定

HIP Estimator［Cohen，PODS＇14］

$$
\widetilde{n_{d}}(v)=\sum_{u \in \mathrm{ADS}(v), d_{G}(v, u) \leq d} \frac{1}{\tau_{u}}
$$

ADS による近接関数の推定

HIP Estimator

$$
\widetilde{n_{d}}(v)=\sum_{u \in \operatorname{ADS}(v), d_{G}(v, u) \leq d} \frac{1}{\tau_{u}}
$$

vの ADS だけから推定可

精度

$$
C V \underset{\substack{ \\(\mathrm{cv}=\text { 標準偏差 } / \text { 平均 })}}{ }
$$

Sketch Retrieval Shortcuts（遈寀手法）

Part 3

概要：Sketch Retrieval Shortcuts

アイディア

1．ADS を新たなグラフ G_{ADS} とみなす
2．G_{ADS} から $\operatorname{ADS}(v)$ を取得するアルゴリズムを定義
3．取得アルゴリズムが正しく動作するために必要十分な辺のみにする

ADS の全体よりも遥かに小さいデータ構造となるが ADS が瞬時に取得できる！

考え方 ：ADS 取得の難しさ

前提：頂点 v の ADS（v）を必要に応じて取り出したい全頂点保存しておく \rightarrow 容量多すぎ
－前処理なし \rightarrow グラフ全体の探索が必要，遅すぎ下図のように，「飛び地」があるので，グラフ全体を調べる必要がある

うまく中間を取れないか？

Figure 1：Examples of a graph and an ADS $(k=2)$ ．

秋葉＋，Compact and Scalable Graph Neighborhood Sketching（KDD＇16）

考え方 ：制限された探索によるADS 取得

目標：ADS 取得時にちょっと計算をしてもいい

－グラフ全体の探索をしたくない
大規模なグラフのサイズに比例した計算量は無謀
－ADS 内の頂点のみを訪れる探索で取得できるか？勿論，これは元のグラフ上では実現できない

（a）A graph．

（b）The vertices in $\mathcal{A}(1)$ ．

Figure 1：Examples of a graph and an ADS $(k=2)$ ．

考え方 ：グラフとしての ADS と SRS

ADS 内の頂点のみを訪れる探索をしたい？

－ADS をグラフだと思うと，これは成功する当然．全ADS 内の頂点に 1 hopで到達．
－無くても成功する辺がいっぱいある必要最低限の辺に選別したのが SRS（提案手法）

（a）ADSs as a graph．

（b）SRSs as a graph．

Figure 2：ADSs and SRSs as graphs．

アルゴリズム：SRS から ADS を取得

```
Algorithm 1: Retrieving the ADS of vertex \(u\)
    Procedure Retrieve-ADS ( \(\mathcal{B}, u, k\) )
        \(A \leftarrow\) an empty all-distances sketch;
        \(Q \leftarrow\) a priority queue with only one element \((0, u)\);
        while \(Q\) is not empty do
            \(\left(\delta_{u v}, v\right) \leftarrow Q\). Pop;
            if \(u \notin A\) and \(r(v)<\pi(u, v)\) then
                Add \(\left(v, \delta_{u v}\right)\) to \(A\);
                for all \(\left(\delta_{v w}, w\right) \in \mathcal{B}(v)\) do
                    \(Q . \operatorname{Push}\left(\delta_{u v}+\delta_{v w}, w\right) ;\)
        return \(A\);
```


（a）Retrieving $\mathcal{A}(1)$ ．

（b）Retrieving $\mathcal{A}(2)$ ．

Figure 3：Retrieval of ADSs from SRSs．

－SRS 上で Dijkstra のアルゴリズムを実行する

－ただし，ADSに含まれない頂点は訪問しない重要：ADS に含まれる力不力は探究中の情報のみで判断可能！

アルゴリズム ：グラフから SRS 権築

```
Algorithm 2: Constructing SRSs from ADSs (naive).
    Procedure Construct-SRS-Naive \((G=(V, E), \mathcal{A}, k)\)
        \(B[u] \leftarrow \emptyset\) for all \(u \in V\);
        \(T \leftarrow\left\{\left(\delta_{u v}, v, u\right) \mid\left(v, \delta_{u v}\right) \in \mathcal{A}(u)\right\} ;\)
        Sort \(T\);
        for \(\left(\delta_{u v}, v, u\right) \in T\) do
            \(A \leftarrow\) Retrieve-ADS \((B, u, k)\);
```



```
            return \(B\);
```


－全ADSを距離が短い順にソート

－各エントリをSRS に入れるかを判定
SRS を小さい距離の部分から構築してゆく
判定には取得アルゴリズムを利用
枝刈りラベリング法 ［Akiba＋，SIGMOD＇13］と類似

取得によって既にそのエントリが得られるのであれば必要ない

兠路すること

定義と性質

－SRS の数学的定義とその性質

構築アルゴリズム

より高速な構築アルゴリズム

- ADSを経由しない省メモリな構築アルゴリズム
- 並列化

更なるサイズ縮減
 －元グラフでの近傍は除去する

它灵験結昆

Part 4

サイス

- ADS：通常の ADS
- ADS－c：ADS＋LZ 圧縮（snappy）
- SRS：通常の SRS
－SRS－i ：SRS＋implicit neighbor

データ：com－DBLP $(|V|=0.3 \mathrm{M},|E|=2 \mathrm{M})$
－汎用圧縮アルゴリズムはほぼ効果なし各ADSが短く，反復が少ないため
－SRS は k が大きいほど ADS との差が大きい $k=256$ で 10 倍以上の差

復元時間

- ADS－c：ADS＋LZ 圧縮（snappy）
- SRS：通常のSRS
－SRS－i ：SRS＋implicit neighbor

データ：com－DBLP $(|V|=0.3 \mathrm{M},|E|=2 \mathrm{M})$
－大きい k でも数 ms 程度
$k=256$ で 8 ms 程度
－復元後は通常のADS と同樣に指標の推定が可能

構築時間

- ADS－c：ADS＋LZ 圧縮（snappy）
- SRS：ADS 経由の構築
- SRS－d：直接構築（省スペース）

$$
\text { データ : com-DBLP }(|V|=0.3 \mathrm{M},|E|=2 \mathrm{M})
$$

スケーラビリティ

- 3M 頂点， 200 M 辺のソーシャルグラフ
- 7M 頂点，200M 辺のウェブグラフ

数時間～10時間 ${ }_{(k=16)}$

たとめ

まとめ

背景：All－Distances Sketches の有用性と課題

- 理論的には優れた性質を持つグラフスケッチ
- しかし，実用的には，サイズがとても大きい

提案手法：Sketch Retrieval Shortcuts

- ADS より小さいスケッチ：1／3～1／10
- 各頂点のADSを瞬時に復元：数ms
- 復元したADSを用いて元と同様の推定が可能

