ERATO 感謝祭 Season II

$$
\begin{gathered}
\text { 小関健太 } \\
\text { (国立情報学研究所) }
\end{gathered}
$$

（JST，ERATO，河原林巨大グラフプロジェクト）
Joint work with
河原林 健一（NII \＆JST，ERATO）

Today＇s topics

－Spanning closed walks and TSP in 3－connected planar graphs，JCTB 109 （2014）1－33．
－4－connected projective－planar graphs are hamiltonian－connected，JCTB 112 （2015）36－69．

Journal of Combinatorial Theory Series B（JCTB）
：組合せ論の雑誌，Series B は主にグラフ理論

Hamiltonian cycles

Hamiltonian cycles in G I
Cycles passing \forall vertices in G

Hamiltonian cycles

Hamiltonian cycles in G

 ICycles passing \forall vertices in G

Hamiltonicity of plane graphs

Tait（1884）：
\forall cubic maps have Hamiltonian cycle \Downarrow
\forall plane graphs have a 4－coloring True（4－color thm．）

Hamiltonicity of plane graphs

Tait（1884）：
\forall cubic maps have Hamiltonian cycle \Downarrow
\forall plane graphs have a 4－coloring True（4－color thm．）

Hamiltonicity of plane graphs

Tait（1884）：
\forall cubic maps have Hamiltonian cycle \Downarrow
\forall plane graphs have a 4－coloring True（4－color thm．）

Hamiltonicity of plane graphs

Tait（1884）：
\forall cubic maps have Hamiltonian cycle \Downarrow
\forall plane graphs have a 4－coloring True（4－color thm．）

Hamiltonicity of plane graphs

Tait（1884）：
\forall cubic maps have Hamiltonian cycle \Downarrow
\forall plane graphs have a 4－coloring True（4－color thm．）

Hamiltonicity of plane graphs

Tait（1884）：
\forall cubic maps have Hamiltonian cycle \Downarrow
\forall plane graphs have a 4 －coloring
True（4－color thm．）

Hamiltonicity of plane graphs

Tait（1884）：
\forall cubic maps have Hamiltonian cycle False \Downarrow
\forall plane graphs have a 4 －coloring True（4－color thm．）

Hamiltonicity of plane graphs

Tait（1884）：
\forall cubic maps have Hamiltonian cycle False \Downarrow \forall plane graphs have a 4－coloring True（4－color thm．）

Other application
－TSP（Travelling Salesman Problem）
－VLSI（Very Large Scale Integration）layout

Hamiltonian cycles

Theorem（Tutte，｀ 56 ）

$\forall 4$－connected plane graph has a Hamiltonian cycle．

$$
\begin{gathered}
G: k \text {-conn. } \Leftrightarrow \forall S \subset V(G) \text { with }|S| \leq k-1 \\
G-S \text { is connected }
\end{gathered}
$$

Hamiltonian cycles

Theorem（Tutte，｀56）

\forall 4－connected plane graph has a Hamiltonian cycle．

$$
\begin{aligned}
& G: k \text {-conn. } \Leftrightarrow \forall S \subset V(G) \text { with }|S| \leq k-1 \\
& G-S \text { is connected }
\end{aligned}
$$

There still remain several interesting conjectures in this area．
\checkmark The 3－connected case（Goemans Conj．）
\checkmark The case of graphs on projective plane（Dean Conj．）

Today＇s topics

－Spanning closed walks and TSP in 3－connected planar graphs，JCTB 109 （2014）1－33．
－4－connected projective－planar graphs are hamiltonian－connected，JCTB 112 （2015）36－69．

Journal of Combinatorial Theory Series B（JCTB）
組合せ論の雑誌，Scrics D は立にグラフ理論

Hamiltonian cycles

Theorem（Tutte，｀56）

$\forall 4$－connected plane graph has a Hamiltonian cycle．
\exists Infinitely many 3－conn．non－Hamiltonian plane graph

Hamiltonian cycles

Theorem（Tutte，｀56）

\forall 4－connected plane graph has a Hamiltonian cycle．
\exists Infinitely many 3－conn．non－Hamiltonian plane graph

Problem

Find＂good＂structures which are close to Hamiltonian cycles in 3－conn．plane graphs

Hamiltonian cycles

Theorem（Tutte，｀56）

\forall 4－connected plane graph has a Hamiltonian cycle．
\exists Infinitely many 3－conn．non－Hamiltonian plane graph
Problem
Find＂good＂structures which are close to Hamiltonian cycles in 3－conn．plane graphs

Including plane triangulations

Hamiltonian cycles

Remark：

$\exists 2$－conn．plane graphs
which are far from being Hamiltonian
Ex．Complete bipartite graph $K_{2, m}$

Problem

Find＂good＂structures which are close to
Hamiltonian cycles in 3－conn．plane graphs

Including plane triangulations

Spanning closed walks

Here we focus on a spanning closed walk with short length．
SCW ：Cycle which can pass thr．vertices many times
A Hamiltonian cycle $=$ a SCW of length $|G|$

SCW of length 9

Spanning closed walks

Here we focus on a spanning closed walk with short length．
SCW ：Cycle which can pass thr．vertices many times
A Hamiltonian cycle $=$ a SCW of length $|G|$

Thm．（Asano，Nishizeki，Watanabe，1980）
\forall Plane triangulation has

$$
\text { a SCW of length } \leq \frac{3|G|-9}{2} \text {. }
$$

SCW of length 9

Spanning closed walks

Here we focus on a spanning closed walk with short length．
SCW ：Cycle which can pass thr．vertices many times
A Hamiltonian cycle $=$ a SCW of length $|G|$

Thm．（Asano，Nishizeki，Watanabe，1980）
\forall Plane triangulation has

$$
\text { a SCW of length } \leq \frac{3|G|-9}{2}
$$

SCW of length 9

Spanning closed walks

Here we focus on a spanning closed walk with short length.
SCW : Cycle which can pass thr. vertices many times

A Hamiltonian cycle $=$ a SCW of length $|G|$

SCW of length 9

Thm. (Asano, Nishizeki, Watanabe, 1980)
\forall Plane triangulation has

$$
\text { a SCW of length } \leq \frac{3|G|-9}{2}
$$

Main Theorem $O\left(n^{2}\right)$-time algorithm
$\forall 3$-conn. plane graph has

$$
\text { a SCW of length } \leq \frac{4|G|-4}{3}
$$

Best possibility

H ：Plane triangulation

Best possibility

H ：Plane triangulation
G ：Face subdivision of H

Best possibility

To span each added vertex， we need the length ≥ 2
H ：Plane triangulation
G ：Face subdivision of H

Best possibility

H ：Plane triangulation G ：Face subdivision of H

To span each added vertex， we need the length ≥ 2

For every SCW，
the length of it is

$\geq 2|V(G)-V(H)|$
$=2(2|V(H)|-4)=\frac{4|V(G)|-8}{3}$

GTSP for plane graphs

Graph－Traveling Salesman Problem（GTSP）：

Input：a（undirected）graph G of order n
Want：a shortest Hamilton cycle of the complete graph K_{n} ， where the weight of an edge is the distance in G

GTSP for plane graphs

Graph－Traveling Salesman Problem（GTSP）：

Input：a（undirected）graph G of order n
Want：a shortest Hamilton cycle of the complete graph K_{n} ， where the weight of an edge is the distance in G

GTSP $\min \sum_{e \in E(G)} x(e)$ sub．to $x(\delta(S)) \geq 2$ for $\forall S \subset V(G)$
$\delta(S)$ ：The set of edges joining S and $V(G)-S$

$$
\begin{aligned}
& x(\delta(\{v\}))=2 \text { for } \forall v \in V(G) \\
& x(e) \in \mathbb{Z}_{\geq 0} \text { for } \forall e \in E(G)
\end{aligned}
$$

GTSP for plane graphs

Graph－Traveling Salesman Problem（GTSP）：

Input：a（undirected）graph G of order n
Want：a shortest Hamilton cycle of the complete graph K_{n} ， where the weight of an edge is the distance in G

GTSP $\min \sum_{e \in E(G)} x(e)$ sub．to $\quad x(\delta(S)) \geq 2$ for $\forall S \subset V(G)$

$$
\begin{aligned}
& x(\delta(\{v\}))=2 \text { for } \forall v \in V(G) \\
& x(e) \in \mathbb{Z}_{\geq 0} \quad \text { for } \forall e \in E(G)
\end{aligned}
$$

$\delta(S)$ ：The set of edges joining S and $V(G)-S$

Integer restriction

GTSP for plane graphs

4／3－Conjecture（Goemans＇95）

$\forall G$ ：（connected）graph
$\underline{\mathrm{OPT}(\mathrm{GTSP})} \leq \frac{4}{3}$ SER ：Subtour Elimination Relaxation
OPT（SER）$\leq \overline{3} \quad$（Linear prog．relax．of GTSP）

GTSP $\min \sum_{e \in E(G)} x(e)$ sub．to $x(\delta(S)) \geq 2$ for $\forall S \subset V(G)$

$$
\begin{aligned}
& x(\delta(\{v\}))=2 \text { for } \forall v \in V(G) \\
& x(e) \in \mathbb{Z}_{\geq 0} \quad \text { for } \forall e \in E(G)
\end{aligned}
$$ joining S and $V(G)-S$

Integer restriction

GTSP for plane graphs

4／3－Conjecture（Goemans＇95）
$\forall G$ ：（connected）graph
$\frac{\mathrm{OPT}(\mathrm{GTSP})}{\mathrm{OPT}(\mathrm{SER})} \leq \frac{4}{3} \quad \begin{array}{r}\text { SER ：Subtour Elimination Relaxatio } \\ \text {（Linear prog．relax．of GTSP）}\end{array}$
${ }^{\prime} \quad \leq 3 / 2$＂is true for \forall graph（Wolsey＇ 80 ，Shmoys，Williamson ‘90） Remark： $\mathrm{OPT}(\mathrm{GTSP})=$ length of a shortest SCW in G ， OPT（SER）$\geq|V(G)|$

GTSP for plane graphs

4／3－Conjecture（Goemans＇95）

$\forall G$ ：（connected）graph
$\frac{\mathrm{OPT}(\mathrm{GTSP})}{\mathrm{OPT}(\mathrm{SER})} \leq \frac{4}{3} \quad \begin{array}{r}\text { SER ：Subtour Elimination Relaxatio } \\ \text {（Linear prog．relax．of GTSP）}\end{array}$
$" \leq 3 / 2$＂is true for \forall graph（Wolsey＇80，Shmoys，Williamson＇90） Remark： $\mathrm{OPT}(\mathrm{GTSP})=$ length of a shortest SCW in G ， OPT（SER）$\geq|V(G)|$

Conjectured by Goemans｀07

Cor．of Main Thm．
4／3－Conjecture is true for 3－conn．plane graphs．

Today＇s topics

－Spanning closed walks and TSP in 3－connected planar graphs，JCTB 109 （2014）1－33．
－4－connected projective－planar graphs are hamiltonian－connected，JCTB 112 （2015）36－69．

Journal of Combinatorial Theory Series B（JCTB）組合せ論の雑誌，Series B は主にグラフ理論

Hamiltonian－connected

G ：Hamiltonian－conn． §
For \forall pair of vertices， \exists H－path between them
$G:$ Hamiltonian－conn．
$\Rightarrow \exists$ Hamilton cycle

\Rightarrow ヨHamilton path

Hamiltonian－connected

G ：Hamiltonian－conn． I
For \forall pair of vertices，
\exists H－path between them
$G:$ Hamiltonian－conn．
$\Rightarrow \exists$ Hamilton cycle

$\Rightarrow \exists$ Hamilton path
－$\in V(G) \quad \boldsymbol{\jmath} \in E(G)$

Surfaces

4-connected graphs on surfaces

	$\begin{aligned} & \text { Plane } \\ & \chi=2 \end{aligned}$	Proj. plane $\chi=1$	$\begin{aligned} & \text { Torus } \\ & \chi=0 \end{aligned}$	$\begin{gathered} \text { K-bottle } \\ \chi=0 \end{gathered}$	$\chi \stackrel{N_{3}}{=}-1$	Others $\chi<-1$
H-path	\bigcirc	0	Thomas, Yu \& Zang (‘05)			2
H-cycle	Tutte (‘56)	Thomas \& Yu (‘94)			3	3
H-conn			3			

4-connected graphs on surfaces

	$\begin{aligned} & \text { Plane } \\ & \chi=2 \end{aligned}$	Proj. plane $\chi=1$	$\begin{aligned} & \text { Torus } \\ & \chi=0 \end{aligned}$	$\begin{gathered} \text { K-bottle } \\ \chi=0 \end{gathered}$	$\chi \stackrel{N_{3}}{=-1}$	Others $\chi<-1$
H-path	\bigcirc	0	Thomas, Yu \& Zang ('05)	$?$	$?$	
H-cycle				73)	3	
H-conn	(‘83)	$\begin{gathered} ? \\ \text { Dean ('90) } \end{gathered}$			3	

4-connected graphs on surfaces

	$\begin{aligned} & \text { Plane } \\ & \chi=2 \end{aligned}$	Proj. plane $\chi=1$	Torus $\chi=0$	$\begin{gathered} \text { K-bottle } \\ \chi=0 \end{gathered}$	$\chi \stackrel{N_{3}}{=}-1$	Others $\chi<-1$
H-path	\bigcirc	0	$\underbrace{}_{\substack{\text { Thomas, Yu } \\ \& \text { Zang ('005) }}}$	$?$	$?$	
H-cycle	Tutte (‘56)			73) ?		
H-conn		$\begin{gathered} ? \\ \text { Dean (‘90) } \end{gathered}$				

4－conn．graphs on projective plane

Main Thm．

$\forall G$ ：4－connected graphs on the projective plane \Rightarrow Hamiltonian－connected

Projective plane

The view of Algorithm

Our proof implies the following $O\left(n^{2}\right)$－algorithm

Input ：A 4－conn．Projective－planar graph G of order n 2 vertices x, y of G
Output：Hamilton path（Tutte path）in G between x, y

The view of Algorithm

Our proof implies the following $O\left(n^{2}\right)$－algorithm

Input ：A 4－conn．Projective－planar graph G of order n 2 vertices x, y of G
Output ：Hamilton path（Tutte path）in G between x, y
Chiba \＆Nishizeki（ 89 ）：
$\exists O(n)$－time algorithm to find Hamilton cycle in 4－conn．plane graph of order n

Summary

Theorem（Tutte，｀56）

\forall 4－connected plane graph has a Hamilton cycle．

$$
\begin{aligned}
& G: k \text {-conn. } \Leftrightarrow \forall S \subset V(G) \text { with }|S| \leq k-1 \\
& G-S \text { is connected }
\end{aligned}
$$

There still remain several interesting conjectures in this area．
\checkmark The 3－connected case（Goemans Conj．）
\checkmark The case of graphs on projective plane（Dean Conj．）

Thank you for your attention

