ERATO 感謝祭 Season II

小関 健太 (国立情報学研究所) (JST, ERATO, 河原林巨大グラフプロジェクト)

Joint work with

河原林健一(NII & JST, ERATO)

Today's topics

- Spanning closed walks and TSP in 3-connected planar graphs, JCTB 109 (2014) 1-33.
- 4-connected projective-planar graphs are hamiltonian-connected, JCTB 112 (2015) 36-69.

Journal of Combinatorial Theory Series B (JCTB)

:組合せ論の雑誌, Series B は主にグラフ理論

Hamiltonian cycles in G \updownarrow Cycles passing \forall vertices in G

 $\bullet \in V(G)$

4th August, 2015

ERATO 感謝祭 Season II

 $\in E(G)$

Hamiltonian cycles in GCycles passing \forall vertices in G

 $\in E(G)$

 $\bullet \in V(G) \quad \checkmark$

4th August, 2015

4th August, 2015

4th August, 2015

4th August, 2015

4th August, 2015

Hamiltonicity of plane graphs Tait (1884) :

 \forall cubic maps have Hamiltonian cycle

 \forall plane graphs have a 4-coloring True (4-color thm.)

4th August, 2015

Hamiltonicity of plane graphs

Tait (1884) :

 \forall cubic maps have Hamiltonian cycle

 \forall plane graphs have a 4-coloring True (4-color thm.)

4th August, 2015

ERATO 感謝祭 Season II

11

Other application

- TSP (Travelling Salesman Problem)
- VLSI (Very Large Scale Integration) layout

Theorem (Tutte, `56)

 \forall 4-connected plane graph has a Hamiltonian cycle.

G: k-conn. $\Leftrightarrow \forall S \subset V(G) \text{ with } |S| \leq k-1$ G-S is connected

4th August, 2015

Theorem (Tutte, `56)

 \forall 4-connected plane graph has a Hamiltonian cycle.

G: k-conn. $\Leftrightarrow \forall S \subset V(G) \text{ with } |S| \leq k-1$ G-S is connected

There still remain several interesting conjectures in this area.

- ✓ The 3-connected case (Goemans Conj.)
- ✓ The case of graphs on projective plane (Dean Conj.)

Today's topics

- Spanning closed walks and TSP in 3-connected planar graphs, JCTB 109 (2014) 1-33.
- 4-connected projective-planar graphs are hamiltonian-connected, JCTB 112 (2015) 36-69.

Journal of Combinatorial Theory Series B (JCTB)

:組合せ論の雑誌, Series B は主にグラフ理論

4th August, 2015

Theorem (Tutte, `56)

 \forall 4-connected plane graph has a Hamiltonian cycle.

∃ Infinitely many 3-conn. non-Hamiltonian plane graph

4th August, 2015

Theorem (Tutte, `56)

 \forall 4-connected plane graph has a Hamiltonian cycle.

∃ Infinitely many 3-conn. non-Hamiltonian plane graph

Problem

Find ``good'' structures which are close to Hamiltonian cycles in 3-conn. plane graphs

4th August, 2015

Theorem (Tutte, `56)

 \forall 4-connected plane graph has a Hamiltonian cycle.

∃ Infinitely many 3-conn. non-Hamiltonian plane graph

Problem

Find ``good'' structures which are close to Hamiltonian cycles in <u>3-conn. plane graphs</u>

Including plane triangulations

Remark:

∃2-conn. plane graphs

which are far from being Hamiltonian

Ex. Complete bipartite graph $K_{2,m}$

Problem

Find ``good'' structures which are close to Hamiltonian cycles in <u>3-conn. plane graphs</u>

Including plane triangulations

4th August, 2015

4th August, 2015

4th August, 2015

Best possibility

H : Plane triangulation

4th August, 2015

Best possibility

H : Plane triangulation*G* : Face subdivision of *H*

4th August, 2015

To span each added vertex, we need the length ≥ 2

H : Plane triangulation*G* : Face subdivision of *H*

H : Plane triangulation G: Face subdivision of H

To span each added vertex, we need the length > 2

For every SCW,

the length of it is $\geq 2|V(G) - V(H)| \\ = 2(2|V(H)| - 4) = \frac{4|V(G)| - 8}{3}$

<u>Graph-Traveling Salesman Problem (GTSP) :</u>

Input: a (undirected) graph G of order n

Want: a shortest Hamilton cycle of the complete graph K_n ,

where the weight of an edge is the distance in G

<u>Graph-Traveling Salesman Problem (GTSP) :</u>

Input: a (undirected) graph G of order n

Want: a shortest Hamilton cycle of the complete graph K_n ,

where the weight of an edge is the distance in G

GTSP
$$\min \sum_{e \in E(G)} x(e)$$

sub. to $x(\delta(S)) \ge 2$ for $\forall S \subset V(G)$
 $x(\delta(\{v\})) = 2$ for $\forall v \in V(G)$
 $x(e) \in \mathbb{Z}_{\ge 0}$ for $\forall e \in E(G)$

 $\delta(S)$: The set of edges joining S and V(G) - S

<u>Graph-Traveling Salesman Problem (GTSP) :</u>

Input: a (undirected) graph G of order n

Want: a shortest Hamilton cycle of the complete graph K_n ,

where the weight of an edge is the distance in G

$$\begin{array}{ccc} \textbf{GTSP} & \min \sum_{e \in E(G)} x(e) & \delta(S) : \text{The set of edges} \\ \text{sub. to} & x(\delta(S)) \geq 2 & \text{for } \forall S \subset V(G) & \text{joining } S \text{ and } V(G) - S \\ & x(\delta(\{v\})) = 2 & \text{for } \forall v \in V(G) & \textbf{SCW condition} \\ & x(e) \in \mathbb{Z}_{\geq 0} & \text{for } \forall e \in E(G) & \textbf{Integer restriction} \end{array}$$

4th August, 2015

4/3-Conjecture (Goemans '95)

 $\frac{OPT(GTSP)}{OPT(SER)} \leq$

 $\forall G$: (connected) graph

 $-\overline{3}$

SER : Subtour Elimination Relaxation (Linear prog. relax. of GTSP)

$$\begin{array}{ccc} \textbf{GTSP} & \min \sum_{e \in E(G)} x(e) & \delta(S) &: \text{The set of edges} \\ & \text{sub. to} & x(\delta(S)) \geq 2 & \text{for } \forall S \subset V(G) & \text{joining } S \text{ and } V(G) - S \\ & x(\delta(\{v\})) = 2 & \text{for } \forall v \in V(G) & \text{SCW condition} \\ & x(e) \in \mathbb{Z}_{\geq 0} & \text{for } \forall e \in E(G) & \text{Integer restriction} \end{array}$$

4th August, 2015

GTSP for plane graphs $\frac{4/3-\text{Conjecture (Goemans '95)}}{\forall G : (connected) graph$

 $\frac{OPT(GTSP)}{OPT(SER)} \le \frac{4}{3}$ SER : Subtour Elimination Relaxation (Linear prog. relax. of GTSP)

 $≤ 3/2 " is true for \forall graph (Wolsey '80, Shmoys, Williamson '90)$ <u>Remark:</u> OPT(GTSP) = length of a shortest SCW in G,OPT(SER) ≥ |V(G)|

4/3-Conjecture (Goemans '95)

 $\frac{\forall G : \text{(connected) graph}}{\text{OPT(GTSP)}} \leq \frac{4}{3} \quad \frac{\text{SER}}{3}$

SER : Subtour Elimination Relaxation (Linear prog. relax. of GTSP)

 $1^{\circ} \leq 3/2^{\circ}$ is true for \forall graph (Wolsey '80, Shmoys, Williamson '90) <u>Remark:</u> OPT(GTSP) = length of a shortest SCW in *G*, OPT(SER) $\geq |V(G)|$ Conjectured by Goemans `07 <u>Cor. of Main Thm.</u> 4/3-Conjecture is true for 3-conn. plane graphs.

Today's topics

- Spanning closed walks and TSP in 3-connected planar graphs, JCTB 109 (2014) 1-33.
- 4-connected projective-planar graphs are hamiltonian-connected, JCTB 112 (2015) 36-69.

Journal of Combinatorial Theory Series B (JCTB)

:組合せ論の雑誌, Series B は主にグラフ理論

4th August, 2015

Hamiltonian-connected

- G : Hamiltonian-conn.
- $\Rightarrow \exists$ Hamilton cycle
- $\Rightarrow \exists$ Hamilton path

Hamiltonian-connected

- G : Hamiltonian-conn.
- $\Rightarrow \exists$ Hamilton cycle
- $\Rightarrow \exists$ Hamilton path

Surfaces

4-connected graphs on surfaces

	$\begin{array}{c} \text{Plane} \\ \chi = 2 \end{array}$	Proj. plane $\chi = 1$	Torus $\chi = 0$	K-bottle $\chi = 0$	$\begin{array}{c} N_3\\ \chi = -1 \end{array}$	Others $\chi < -1$
H-path	0	Ο	O Thomas, Yu & Zang ('05)			*
H-cycle	O Tutte ('56)	O Thomas & Yu ('94)			*	×
H-conn	O Thomassen ('83)		×	*	×	×
4th August, 2015 ERATO 感謝祭 Season II 38						

4-connected graphs on surfaces

	$\begin{array}{c} \text{Plane} \\ \chi = 2 \end{array}$	Proj. plane $\chi = 1$	Torus $\chi = 0$	K-bottle $\chi = 0$	$\begin{array}{c} N_3\\ \chi = -1 \end{array}$	Others $\chi < -1$
H-path	0	Ο	O Thomas, Yu & Zang ('05)	?	?	×
H-cycle	O Tutte ('56)	O Thomas & Yu ('94)	? Grunbaum('70) Nash-Williams	? ('73)	×	×
H-conn	O Thomassen ('83)	? Dean ('90)	×	*	×	*
4th August, 2015 ERATO 感謝祭 Season II 39						

4-connected graphs on surfaces

	$\begin{array}{c} \text{Plane} \\ \chi = 2 \end{array}$	Proj. plane $\chi = 1$	Torus $\chi = 0$	K-bottle $\chi = 0$	$\begin{array}{c} N_3\\ \chi = -1 \end{array}$	Others $\chi < -1$
H-path	0	Ο	O Thomas, Yu & Zang ('05)	?	?	×
H-cycle	O Tutte ('56)	O Thomas & Yu ('94)	? Grunbaum('70) Nash-Williams	? ('73)	*	×
H-conn	O Thomassen ('83)	? Dean ('90)	×	*	×	×
4th August, 2015 ERATO 感謝祭 Season II 40						

4-conn. graphs on projective plane

Main Thm.

 $\forall G : 4$ -connected graphs on the projective plane \Rightarrow Hamiltonian-connected

Projective plane

The view of Algorithm

Our proof implies the following $O(n^2)$ -algorithm

Input : A 4-conn. Projective-planar graph G of order n
2 vertices x, y of G
Output : Hamilton path (Tutte path) in G between x, y

The view of Algorithm

Our proof implies the following $O(n^2)$ -algorithm

Input : A 4-conn. Projective-planar graph G of order n
2 vertices x, y of G
Output : Hamilton path (Tutte path) in G between x, y

Chiba & Nishizeki (`89) : $\exists O(n)$ -time algorithm to find Hamilton cycle in 4-conn. plane graph of order n

Summary

Theorem (Tutte, `56)

 \forall 4-connected plane graph has a Hamilton cycle.

$$G: k$$
-conn. $\Leftrightarrow \forall S \subset V(G) \text{ with } |S| \leq k-1$
 $G-S \text{ is connected}$

There still remain several interesting conjectures in this area.

- ✓ The 3-connected case (Goemans Conj.)
- ✓ The case of graphs on projective plane (Dean Conj.)

Thank you for your attention

