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What is intrinsic dimensionality?

Definition: Intrinsic Dimensionality

Intrinsic dimensionality can be described as the minimum number
of coordinates required to locate a point in the space.
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Current applications of ID

Analysis of search indices (Expansion Dimension)

Navigating Nets [Krauthgamer & Lee (2005)]

Cover Tree [Beygelzimer, Kakade, Langford (2006)]

Rank Cover Tree [Houle & Nett (2013)]

Analysis of projection, Outlier detection (Expansion Dimension)

LOF-based PINN outlier detection [de Vries, Chawla, Houle
(2010)]

Projection and dimensional reduction

Principal component analysis [Pearson (1901)]
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Potential applications of ID

Prediction

estimate the target dimension for dimensionality reduction.

predict the difficulty of data sets/subsets/points.

Processing

redesign machine learning algorithms by adapting them to the
local variation of ID (queries in points with low ID are more
trustworthy).

Evaluation

explain the behavior of algorithms and evaluate them more
fairly by accounting for the disparity in ID.
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Global models of ID vs. Local models of ID
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Global models of ID vs. Local models of ID

Properties of global and local models

Global models Local models

measure the dimensinality of the
whole dataset.

the dimensionality in
the neighborhood of a
point.

require a set of data points. a set of distances to the
nearest neighbors.

examples Topological models
(PCA), fractal models
(Hausdorff Dimension,
Correlation Dimension),
Graph-based models,
etc.

Expansion models (ED,
LID).
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Expansion models

x1

x2

B1

B2

Expansion-based methods estimate the intrinsic dimension by
comparing the expansion in distance and the associated expansion
in volume (number of points).
Examples: Expansion Dimension (ED), Minimum Neighborhood
Distance (MiND), Local Intrinsic Dimension (LID).
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How to measure the dimension?

Dimensional query

In an Lp-norm space of dimension m, if
V is a measure of volume then :

V (B2)

V (B1)
=

(
x2
x1

)m

The representational dimension m can
be obtained by :

m =
lnV (B2)− lnV (B1)

ln x2 − ln x1

x1

x2

B1

B2
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Expansion Dimension

Expansion dimension

If volume is measured in terms of
number of points that are captured,
then

ED(q, x1, x2) =
ln k2 − ln k1
ln x2 − ln x1

x1

x2

B1

B2
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Distance as a continuous random variable

Main assumption

Data can be seen as a sample generated from a set of continuous
random variables.

Continuous random distance variable

Let X be an absolutely continuous random distance variable that
represents the distance from a reference point q with

probability density function fX

cumulative distribution function FX =
∫
fX (t)dt

(xi )1≤i<n an ordered sample of X
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Intrinsic dimensional query

Definition

When FX (x) > 0, the continuous ID of
X at distance x is defined as

IntrDimFX
(x) =

lim
ε→0+

(
lnFX ((1 + ε)x)− lnFX (x)

ln(1 + ε)

)

Remarks

The volume is measured in terms
of expected number of points.

X depends on reference point q.

x

ε · x
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Intrinsic dimensional query

By applying l’Hôpital’s rule:

IDFX
(x) =

x · fX (x)

FX (x)

x

ε · x
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Disaster prevention
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Introduction to EVT

Analogy between central and extreme values

Central values → Central limit theorem → Normal distribution

Extreme values → Pickands-Balkema-de Haan theorem →
Generalized Pareto Distribution
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Generalized Pareto Distribution

Cases of the Generalized Pareto
Distribution

ξ = 0 → Gumbel family

ξ > 0 → Fréchet family

ξ < 0 → Weibull family (The
distribution is upper bounded)

Distance distributions are lower
bounded.

We can model distances under a
threshold w using Weibull
distribution.

Figure: pdf of the Weibull
distribution
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Modeling the tail of a distance distribution

Modeling threshold excesses

As a certain threshold w approaches 0, the excess Y = w − X
follows a GPD with parameters ξ and σ:

Pr[Y ≤ y |Y < w ] ≈ 1−
(

1 +
ξy

σ

)− 1
ξ

Heuristic

As w → 0, the distribution of X restricted to the tail [0,w)
converges to that of a random distance variable X ∗

FX ,w (x) ≈ FX∗,w (x) =

(
x

w

)− 1
ξ
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Modeling the tail of a distance distribution

Modeling threshold excesses

IDFX
(0) ≈ lim

x→0
IDFX∗ (x) = lim

x→0

x · fX∗,w (x)

FX∗,w (x)
= −1

ξ

Remarks

This is an approximation since it holds for the limit
distribution as w → 0.

We can use classical estimation methods to estimate the
parameter ξ.

Note: In EVT, −1/ξ is called the index of the distribution.
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Usual statistical methods

Maximum likelihood estimator

ÎDFX∗ (0) = −
(

1

n

n∑
i=1

ln
xi
xn

)−1

Method of moments estimator

ÎDFX∗ (0) = −k µ̂k
µ̂k − xkn

where µ̂k =
n∑

i=1

xki

Probability weighted moments estimator

ÎDFX∗ (0) =
ν̂k

w − (k + 1)ν̂k
where ν̂k =

1

n

n∑
i=1

(
i − 0.35

n

)k

xi
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Regularly Varying Functions Estimator

Regularly Varying Functions Estimator

ÎDFX∗ (0) = κ̂ =

J∑
j=1

αj ln

[
F̂X ((1 + τjδn)xn)/F̂X (xn)

]
J∑

j=1
αj ln(1 + τjδn)

under the assumption that δn → 0+ as n→∞
where : (αj)1≤j<J and (τj)1≤j<J are sequences.
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LID estimation in artificial distances
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Figure: Comparison of ID estimates (ID=2)
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LID estimation in artificial distances
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Figure: Comparison of ID estimates (ID=32)
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ID estimation in artificial datasets

Datasets

manifold d D description

1 10 11 Uniformly sampled sphere

2 3 5 Affine space

3 4 6 Concentrated figure
confusable with a 3d one

4 4 8 Non-linear manifold

5 2 3 2-d Helix

6 6 36 Non-linear manifold

7 2 3 Swiss-Roll
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ID estimation in artificial datasets

Datasets

manifold d D description

8 12 72 Non-linear manifold

9 20 20 Affine space

10a 10 11 Uniformly sampled hypercube

10b 17 18 Uniformly sampled hypercube

10c 24 25 Uniformly sampled hypercube

11 2 3 Möbius band 10-times twisted

12 20 20 Isotropic multivariate Gaussian

13 1 13 Curve
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What is the Intrinsic Dimension?
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Figure: Data structures are detected by ID

25/28

Estimating Local Intrinsic Dimensionality



Introduction
Models of ID

Extreme Value Theory
ID Estimation

Our estimators
Experimental results and interpretation

ID estimation in artificial datasets

Conclusions

Local estimators tend to over-estimate the dimensionality of
non-linear manifolds, and to under-estimate that of linear
manifolds.

For nonlinear manifolds, global estimators have difficulty in
identifying the intrinsic dimension.

The higher the sampling rate, the lower the bias.

Global methods are very affected by noise, while local
methods are more resistant.
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Values of LID in real datasets
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Figure: LID MLE estimates in ALOI and MNIST
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Thank you for your attention!
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