Estimating Local Intrinsic Dimensionality

$\begin{array}{ccc} & \text{L. Amsaleg}^1 & \underline{\text{O. Chelly}}^2 & \text{T. Furon}^1 \\ \text{S. Girard}^3 & \text{M. E. Houle}^2 & \text{K. Kawarabayashi}^2 & \text{M. Nett}^{24} \end{array}$

¹Equipe TEXMEX, INRIA/IRISA Rennes, France

²National Institute of Informatics, Chiyoda-ku, Tokyo, Japan

³Equipe MISTIS, INRIA Grenoble Rhône-Alpes, France

⁴Google Japan, Minato-ku, Tokyo, Japan

August 3, 2015

1/28

Estimating Local Intrinsic Dimensionality

Table of contents

2 Models of ID

- Global vs. local models of ID
- Local models of ID

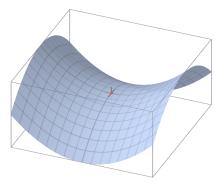
3 Extreme Value Theory

- Threshold model
- ID in the threshold model

ID Estimation

- Our estimators
- Experimental results and interpretation

What is intrinsic dimensionality?



Definition: Intrinsic Dimensionality

Intrinsic dimensionality can be described as the minimum number of coordinates required to locate a point in the space.

Current applications of ID

Analysis of search indices (Expansion Dimension)

- Navigating Nets [Krauthgamer & Lee (2005)]
- Cover Tree [Beygelzimer, Kakade, Langford (2006)]
- Rank Cover Tree [Houle & Nett (2013)]

Analysis of projection, Outlier detection (Expansion Dimension)

• LOF-based PINN outlier detection [de Vries, Chawla, Houle (2010)]

Projection and dimensional reduction

• Principal component analysis [Pearson (1901)]

Potential applications of ID

Prediction

- estimate the target dimension for dimensionality reduction.
- predict the difficulty of data sets/subsets/points.

Processing

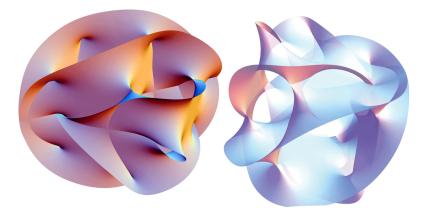
• redesign machine learning algorithms by adapting them to the local variation of ID (queries in points with low ID are more trustworthy).

Evaluation

• explain the behavior of algorithms and evaluate them more fairly by accounting for the disparity in ID.

Global vs. local models of ID Local models of ID

Global models of ID vs. Local models of ID



Estimating Local Intrinsic Dimensionality

Global vs. local models of ID Local models of ID

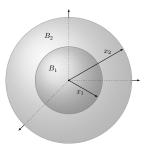
Global models of ID vs. Local models of ID

Properties of global and local models	
Clobal madala	Local

	Global models	Local models
measure	the dimensinality of the	the dimensionality in
	whole dataset.	the neighborhood of a
		point.
require	a set of data points.	a set of distances to the
		nearest neighbors.
examples	Topological models	Expansion models (ED,
	(PCA), fractal models	LID).
	(Hausdorff Dimension,	
	Correlation Dimension),	
	Graph-based models,	
	etc.	

Global vs. local models of ID Local models of ID

Expansion models



Expansion-based methods estimate the intrinsic dimension by comparing the expansion in distance and the associated expansion in volume (number of points). Examples: Expansion Dimension (ED), Minimum Neighborhood Distance (MiND), Local Intrinsic Dimension (LID).

Global vs. local models of ID Local models of ID

How to measure the dimension?

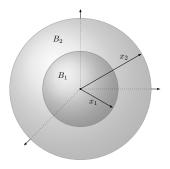
Dimensional query

In an L_p -norm space of dimension m, if V is a measure of volume then :

$$\frac{V(B_2)}{V(B_1)} = \left(\frac{x_2}{x_1}\right)^r$$

The representational dimension m can be obtained by :

$$m = \frac{\ln V(B_2) - \ln V(B_1)}{\ln x_2 - \ln x_1}$$



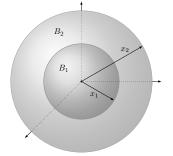
Global vs. local models of ID Local models of ID

Expansion Dimension

Expansion dimension

If volume is measured in terms of number of points that are captured, then

$$ED(q, x_1, x_2) = \frac{\ln k_2 - \ln k_1}{\ln x_2 - \ln x_1}$$



Global vs. local models of ID Local models of ID

Distance as a continuous random variable

Main assumption

Data can be seen as a sample generated from a set of continuous random variables.

Continuous random distance variable

Let **X** be an absolutely continuous random distance variable that represents the distance from a reference point q with

- probability density function f_X
- cumulative distribution function $F_X = \int f_X(t) dt$
- $(x_i)_{1 \le i < n}$ an ordered sample of X

Global vs. local models of ID Local models of ID

Intrinsic dimensional query

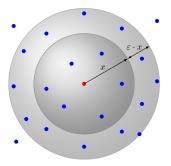
Definition

When $F_X(x) > 0$, the continuous ID of X at distance x is defined as

IntrDim<sub>*F_X*(*x*) =
$$\lim_{\varepsilon \to 0^+} \left(\frac{\ln F_X((1 + \varepsilon)x) - \ln F_X(x)}{\ln(1 + \varepsilon)} \right)$$</sub>

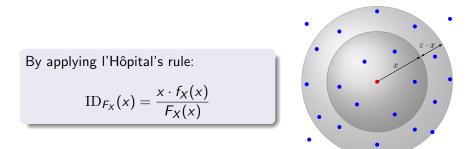
Remarks

- The volume is measured in terms of expected number of points.
- X depends on reference point q.



Global vs. local models of ID Local models of ID

Intrinsic dimensional query



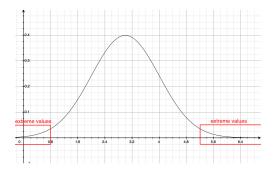
Threshold model ID in the threshold model

Disaster prevention

Estimating Local Intrinsic Dimensionality

Threshold model ID in the threshold model

Introduction to EVT



Analogy between central and extreme values

- Central values \rightarrow Central limit theorem \rightarrow Normal distribution
- Extreme values \rightarrow Pickands-Balkema-de Haan theorem \rightarrow Generalized Pareto Distribution

Threshold model ID in the threshold model

Generalized Pareto Distribution

Cases of the Generalized Pareto Distribution

- $\xi = 0 \rightarrow$ Gumbel family
- $\xi > 0 \rightarrow$ Fréchet family
- $\xi < 0 \rightarrow$ Weibull family (The distribution is upper bounded)
- Distance distributions are lower bounded.
- We can model distances under a threshold *w* using Weibull distribution.

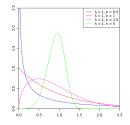


Figure: pdf of the Weibull distribution

Threshold model ID in the threshold model

Modeling the tail of a distance distribution

Modeling threshold excesses

As a certain threshold w approaches 0, the excess Y = w - X follows a GPD with parameters ξ and σ :

$$\Pr[Y \le y | Y < w] \approx 1 - \left(1 + \frac{\xi y}{\sigma}\right)^{-\frac{1}{\xi}}$$

Heuristic

As $w \to 0$, the distribution of X restricted to the tail [0, w) converges to that of a random distance variable X^*

$$F_{X,w}(x) \approx F_{X^*,w}(x) = \left(\frac{x}{w}\right)^{-\frac{1}{\xi}}$$

Estimating Local Intrinsic Dimensionality

Threshold model ID in the threshold model

Modeling the tail of a distance distribution

Modeling threshold excesses

$$\mathrm{ID}_{F_X}(0) \approx \lim_{x \to 0} \mathrm{ID}_{F_{X^*}}(x) = \lim_{x \to 0} \frac{x \cdot f_{X^*,w}(x)}{F_{X^*,w}(x)} = -\frac{1}{\xi}$$

Remarks

- This is an approximation since it holds for the limit distribution as w → 0.
- We can use classical estimation methods to estimate the parameter ξ .
- Note: In EVT, $-1/\xi$ is called the index of the distribution.

Our estimators Experimental results and interpretation

Usual statistical methods

Maximum likelihood estimator

$$\widehat{\mathrm{ID}}_{F_{X^*}}(0) = -\left(\frac{1}{n}\sum_{i=1}^n\ln\frac{x_i}{x_n}\right)^{-1}$$

Method of moments estimator

$$\widehat{\mathrm{ID}}_{F_{X^*}}(0) = -k rac{\hat{\mu}_k}{\hat{\mu}_k - x_n^k} \hspace{0.5cm} ext{where}$$

$$\hat{\mu}_k = \sum_{i=1}^n x_i^k$$

Probability weighted moments estimator

$$\widehat{\mathrm{ID}}_{F_{X^*}}(0) = rac{\hat{
u}_k}{w - (k+1)\hat{
u}_k} \quad ext{where} \quad \hat{
u}_k = rac{1}{n}\sum_{i=1}^n \left(rac{i-0.35}{n}
ight)^k x_i$$

Estimating Local Intrinsic Dimensionality

19/28

Our estimators Experimental results and interpretation

Regularly Varying Functions Estimator

Regularly Varying Functions Estimator

$$\widehat{\mathrm{ID}}_{F_{X^*}}(0) = \hat{\kappa} = \frac{\sum_{j=1}^J \alpha_j \ln \left[\hat{F}_X((1+\tau_j \delta_n) x_n) / \hat{F}_X(x_n) \right]}{\sum_{j=1}^J \alpha_j \ln(1+\tau_j \delta_n)}$$

under the assumption that $\delta_n \to 0^+$ as $n \to \infty$ where : $(\alpha_j)_{1 \le j < J}$ and $(\tau_j)_{1 \le j < J}$ are sequences.

Our estimators Experimental results and interpretation

LID estimation in artificial distances

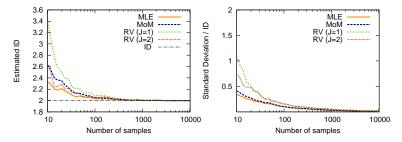


Figure: Comparison of ID estimates (ID=2)

Our estimators Experimental results and interpretation

LID estimation in artificial distances

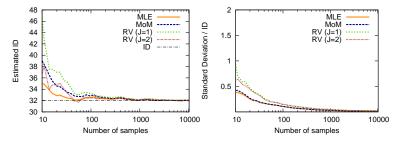


Figure: Comparison of ID estimates (ID=32)

Our estimators Experimental results and interpretation

ID estimation in artificial datasets

Datasets

manifold d	D	description
1 10	11	Uniformly sampled sphere
2 3	5	Affine space
3 4	6	Concentrated figure
		confusable with a 3d one
4 4	8	Non-linear manifold
5 2	3	2-d Helix
6 6	36	Non-linear manifold
7 2	3	Swiss-Roll

Our estimators Experimental results and interpretation

ID estimation in artificial datasets

ſ

Datase	atasets						
	manifold	d	D	description			
	8	12	72	Non-linear manifold			
	9	20	20	Affine space			
	10a	10	11	Uniformly sampled hypercube			
	10b	17	18	Uniformly sampled hypercube			
	10c	24	25	Uniformly sampled hypercube			
	11	2	3	Möbius band 10-times twisted			
	12	20	20	Isotropic multivariate Gaussian			
	13	1	13	Curve			

Our estimators Experimental results and interpretation

What is the Intrinsic Dimension?

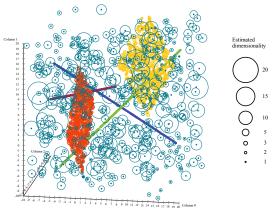


Figure: Data structures are detected by ID

Our estimators Experimental results and interpretation

ID estimation in artificial datasets

Conclusions

- Local estimators tend to over-estimate the dimensionality of non-linear manifolds, and to under-estimate that of linear manifolds.
- For nonlinear manifolds, global estimators have difficulty in identifying the intrinsic dimension.
- The higher the sampling rate, the lower the bias.
- Global methods are very affected by noise, while local methods are more resistant.

Our estimators Experimental results and interpretation

Values of LID in real datasets

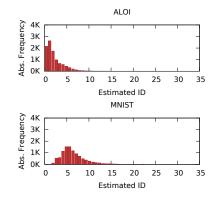


Figure: LID MLE estimates in ALOI and MNIST

Thank you for your attention!

Estimating Local Intrinsic Dimensionality