
Linear time algorithms for
geodesic problems on

simple polygons.

Luis Barba
Carleton University / Université libre de
Bruxelles

Joint work with:
Hee-Kap Ahn, Prosenjit Bose, Jean-Lou
De Carufel, Matias Korman and Eunjin Oh

THE PROBLEM

THE PROBLEM

THE PROBLEM

THE PROBLEM

THE PROBLEM

THE PROBLEM

THE PROBLEM

INTRODUCTION

• Geodesic: shortest path that stays within P

• Always exists and is unique

• Geodesic distance: sum of lengths of the segments

DIAMETER AND RADIUS

• Diameter (diametral pair): largest geodesic
distance

• Radius (center): smallest distance to farthest
neighbor

KNOWN RESULTS

Polygon Diameter Radius / Center Farthest Voronoi

Simple O(n) [HS’93] O(n log n)
[PSR’89]

O((n+m) log (n+m))
[AFW’93]

• All problems have been heavily studied in simple polygons

• Only the diameter problem matches the lower bound

• Several results with other metrics in recent years, but no
progress in these problems

Polygon Diameter Radius / Center Farthest Voronoi

Simple O(n) [HS’93] O(n)
[ABBCKO’15]

O((n+m) log (n+m))
[AFW’93]

OUR RESULTS

• All problems have been heavily studied in simple polygons

• Only the diameter problem matches the lower bound

• Several results with other metrics in recent years, but no
progress in these problems

COMPUTING THE CENTER

CENTER DEFINITION

Let F(p)=max{d(p,q)} for all q in P

• The center minimizes F(p)

• Location is (often) unrelated to the diameter

NAIVE ALGORITHM

• Center may be an interior point of P

• Its farthest neighbors are vertices (at most 3 in general position)

• Vertex of the (geodesic) farthest Voronoi

• O(n3) candidates

• Verifying in polynomial time also possible

Definers

EFFICIENT ALGORITHM’89

Chord-oracle query

• Given a chord of P, determines which side contains c

• Runs in O(n) time

Chord-oracle query

• Given a chord of P, determines which side contains c

• Runs in O(n) time

EFFICIENT ALGORITHM’89

• Binary search to narrow the search to a triangle

EFFICIENT ALGORITHM’89

• Binary search to narrow the search to a triangle

EFFICIENT ALGORITHM’89

• Binary search to narrow the search to a triangle

EFFICIENT ALGORITHM’89

• Binary search to narrow the search to a triangle

• Use optimization tricks to find the center

• No pruning possible -> Θ(n log n) time

EFFICIENT ALGORITHM’89

APEXED TRIANGLES

• Encodes distance to a potential farthest neighbor v

• All points in the triangle have (topologically equivalent) paths to v

• Simple (quadratic) function to encode distance

• We ignore P and work on the triangles

v

APEXED TRIANGLES

• Encodes distance to a potential farthest neighbor v

• All points in the triangle have (topologically equivalent) paths to v

• Simple (quadratic) function to encode distance

• We ignore P and work on the triangles

v

APEXED TRIANGLES

• Encodes distance to a potential farthest neighbor v

• All points in the triangle have (topologically equivalent) paths to v

• Simple (quadratic) function to encode distance

• We ignore P and work on the triangles

v

APEXED TRIANGLES

• Encodes distance to a potential farthest neighbor v

• All points in the triangle have (topologically equivalent) paths to v

• Simple (quadratic) function to encode distance

• We ignore P and work on the triangles

v

OUR APPROACH

• Cover P with apexed triangles that encode F(p)

• Ignore P

• Use cuttings to prune the triangles and recurse

DIFFICULTIES

• A vertex can generate Ɵ(n) apexed triangles

• Many triangles are irrelevant

• Use geometric observations to avoid them

Which triangles do
we use?

DETERMINING RELEVANT TRIANGLES

For each vertex compute its farthest neighbor

We can compute the farthest neighbor of
each vertex in total O(n) time.

v6 v1

v2

v3

v4

v5

DETERMINING RELEVANT TRIANGLES

v is marked if v is farthest neighbor of some other vertex

v6 v1

v2

v3

v4

v5

DETERMINING RELEVANT TRIANGLES

•For all marked vertex we construct its funnel F(v)

• Funnel contains furthest vertices (and two additional neighbors)

MARKED VERTICES

Lemma FV(v)⊆F(v) for any marked vertex v

v

MARKED VERTICES

v

v6 v1

v2

v3

v4

v5

MARKED VERTICES

v

v6 v1

v2

v3

v4

v5

v

v6 v1

v2

v3

v4

v5

UNMARKED VERTICES

v

v6 v1

v2

v3

v4

v5

•Two adjacent u,v such that f(u)≠f(v) define an Hourglass H(v)

• Upper chain may contain unmarked vertices

UNMARKED VERTICES

PROPERTIES OF THE
DECOMPOSITION

Lemma This decomposition is great!

• All hourglasses and funnels have overall linear complexity

• Computed in linear time

• Linear space

• Covers P

• Each point and its farthest neighbor are in an hourglass/funnel

DECOMPOSING A FUNNEL

• Vertices (except endpoints) share farthest neighbor

• Want to encode distance to it

DECOMPOSING A FUNNEL

• Look for topologically equivalent shortest paths

• Similar paths fall in the same apexed triangle

DECOMPOSING A FUNNEL

• Look for topologically equivalent shortest paths

• Similar paths fall in the same apexed triangle

v

DECOMPOSING A FUNNEL

• Look for topologically equivalent shortest paths

• Similar paths fall in the same apexed triangle

v

DECOMPOSING A FUNNEL

• Look for topologically equivalent shortest paths

• Similar paths fall in the same apexed triangle

v

DECOMPOSING A FUNNEL

• Look for topologically equivalent shortest paths

• Similar paths fall in the same apexed triangle

v

DECOMPOSING A FUNNEL

• For each triangle we define an apexed function

• f(p)=d(p,a)+d(a,v)

a
p

v

HOURGLASSES

• We decompose into triangles (similar to funnel)

• The number of triangles is linear on the size of the
hourglass

LET’S RECAP

• Two step decomposition.

• Compute a covering of P

• Further cover regions with triangles

• Two step decomposition

• Compute a covering of P

• Further cover regions with triangles

LET’S RECAP

• Two step decomposition

• Compute a covering of P

• Further cover regions with triangles

LET’S RECAP

OUR APPROACH

• Overall O(n) triangles

• For any point, there is a triangle containing him

• associated vertex is a farthest neighbor

• Overall O(n) triangles

• For any point, there is a triangle containing him

• associated vertex is a farthest neighbor

LET’S RECAP

• Overall O(n) triangles

• For any point, there is a triangle containing him

• associated vertex is a farthest neighbor

LET’S RECAP

We ignore P and use prune&search on triangles

LET’S RECAP

• Covered P with O(n) triangles

• Each triangle associated with a distance function

• We ignore P and work on the triangles

PRUNE AND SEARCH

CUTTINGS

• We construct a cutting of the triangles chords (sides)

• Partition into O(1) cells

• Each cell intersecting the boundary of at most εn
triangles

PRUNE AND SEARCH

• Use the chord oracle of Pollack-Sharir-Rote

• Reduce the problem to a sub-cell

• We discard a fraction of the triangles and iterate

PRUNE AND SEARCH

• Use the chord oracle of Pollack-Sharir-Rote

• Reduce the problem to a sub-cell

• We discard a fraction of the triangles and iterate

PRUNE AND SEARCH

• Use the chord oracle of Pollack-Sharir-Rote

• Reduce the problem to a sub-cell

• We discard a fraction of the triangles and iterate

SUMMARY
• Cover P with funnels/hourglasses

• Further cover the regions with triangles

• Ignore P and apply prune and search to triangles

• Finish a triangular region

• Can be solved in linear time using cuttings in R³

SUMMARY
• Cover P with funnels/hourglasses

• Further cover the regions with triangles

• Ignore P and apply prune and search to triangles

• Finish a triangular region

• Can be solved in linear time using cuttings in R³

Theorem We can compute the center of a simple
polygon in linear time

OPEN QUESTIONS
• Can we compute the center of a set of sites S in the interior of

the polygon in linear time?

• For the case of polygonal domains (polygons with holes), the
running times are polynomial but unfeasible. Can we improve
them? What about lower bounds?

Polygon Diameter Center

Simple O(n) [HS’93] O(n) [ABBCKO’15]

General O(n7.73) [BKO’10] O(n12+ε) [BKO’14]

QUESTIONS? COMMENTS?

Thanks for your attention!

Summary

Polygon Diameter Radius / Center Farthest Voronoi Closest Voronoi

Simple O(n) [HS’93] O(n)
[ABBCKO’15]

O((n+m) log (n+m))
[AFG’93]

O((n+m) log (n+m))
[A’89]

