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INTRODUCTION

* Geodesic: shortest path that stays within P
* Always exists and is unique

* (Geodesic distance: sum of lengths of the segments



DIAMETER AND RADIUS

 Diameter (diametral pair): largest geodesic

distance

 Radius (center): smallest distance to farthest

neighbor



KNOWN RESULTS

Polygon Diameter Radius / Center Farthest Voronoi
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« All problems have been heavily studied in simple polygons
* Only the diameter problem matches the lower bound

o Several results with other metrics in recent years, but no
progress in these problems



OUR RESULTS
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COMPUTING THE CENTER




CENTER DEFINITION

Let F(p)=max{d(p,q)} for all g in P
* The center minimizes F(p)

e [ ocation is (often) unrelated to the diameter



NAIVE ALGORITHM

‘ Definers

+ Center may be an interior pont of P
* |ts farthest neighbors are vertices (at most 3 in general position)
e Vertex of the (geodesic) farthest Voronol

e O(n°) candidates

e Veritying in polynomial time also possible
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Chord-oracle query
e (3iven a chord of P, determines which side contains ¢

 Runsin O(n) time
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cFFICIENT ALGORITHM'89

* Binary search to narrow the search to a triangle
* Use optimization tricks to find the center

* No pruning possible -> O(n log n) time



APEXED TRIANGLES

e Encodes distance to a potential farthest neighbor v
« All points in the triangle have (topologically equivalent) paths to v

« Simple (quadratic) function to encode distance

 We ignore P and work on the triangles
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OUR APPROACH

» Cover P with apexed triangles that encode F(p)
e |gnore P

e Use cuttings to prune the triangles and recurse



DIFFICULTIES

Which triangles do
we use”?

—

* A vertex can generate ©(n) apexed triangles
 Many triangles are irrelevant

* Use geometric observations to avoid them



- [ ERMINING R

-VANT TRIANGL

For each vertex compute its farthest neighbor




-RMINING RELEVANT TRIANGL
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We can compute the tarthest neighbor of
each vertex in total O(n) time.
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v is marked if v is farthest neighbor of some other vertex
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MARKED VERTICES
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e[-or all marked vertex we construct its funnel F(v)

e [Funnel contains furthest vertices (and two additional neighbors)
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UNMARKED VERTICES




UNMARKED VERTICES
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e [WwO adjacent u,v such that f(u)=f(v) define ‘Hourglass H(v)

e Upper chain may contain unmarked vertices



PROPERTIES OF THE
DECOMPOSITION

]L Lemma This decomp08|t|on|s great' o |

* All hourglasses and funnels have overall linear complexity
 Computed in linear time
* Linear space

e CoversP

* Each point and its farthest neighbor are in an hourglass/funnel



DECOMPOSING A FUNNEL
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* Vertices (except endpoints) share farthest neighbor

e \Want to encode distance to it



DECOMPOSING A FUNNEL

* ook for topologically equivalent shortest paths

e Similar paths fall in the same apexed triangle
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DECOMPOSING A FUNNEL

V
* For each triangle we define an apexed function

* f(p)=d(p,a)+d(a,v)



HOURGLASSES

* We decompose into triangles (similar to funnel)

 The number of triangles is linear on the size of the
hourglass



LET'S RECAP
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* [wo step decomposition.

 Compute a covering of P

* Further cover regions with triangles
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e Overall O(n) triangles
* For any point, there is a triangle containing him

e associated vertex is a farthest neighbor



LET'S RECAP

We ignore P and use prune&search on triangles

e E—



PRUNE AND SEARCH

* Covered P with O(n) triangles
e Each triangle associated with a distance function

 We ignore P and work on the triangles



CUTTINGS

* We construct a cutting of the triangles chords (sides)
e Partition into O(1) cells

 Each cell intersecting the boundary of at most en
triangles



PRUNE AND SEARCH

e Use the chord oracle of Pollack-Sharir-Rote
 Reduce the problem to a sub-cell

* We discard a fraction of the triangles and iterate
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SUMMARY

* Cover P with funnels/hourglasses

* Further cover the regions with triangles

* |gnore P and apply prune and search to triangles
* Finish a triangular region

* Can be solved in linear time using cuttings in R3



SUMMARY

* Cover P with funnels/hourglasses

* Further cover the regions with triangles

* |gnore P and apply prune and search to triangles
* Finish a triangular region

* Can be solved in linear time using cuttings in R3

Theorem We can compute the center of a simple
polygon in linear time




OPEN QUESTIONS

 Can we compute the center of a set of sites S in the interior of
the polygon in linear time?

Polygon Diameter Center
Simple O(n) [HS'93] ~ O(n) [ABBCKO’15]
General O’ [BKO0]  O(n'2+) [BKO'14]

* For the case of polygonal domains (polygons with holes), the
running times are polynomial but unfeasible. Can we improve
them? What about lower bounds?



QUESTIONS!? COMMENTS7

_____

Thanks for your attention!

Summary

Polygon Diameter Radius/Center Farthest Voronoi Closest Voronoi

. | O(n) O((n+m) log (n+m)) O((n+m) log (n+m))
Simple  O(n) [HS'93] ([ABBCKO'1S]  [AFGE3] [A'89)]




