Linear time algorithms for
geodesic problems on /,
simple polygons.

Luis Barba
Carleton University / Universite libre de
- \Bruxelles

Joint work with:
Hee-Kap Ahn, Prosenjit Bose, Jean-Lou
De Carufel, Matias Korman and Eunjin Oh

THE PROBLEM

AR

THE PROBLEM

THE PROBLEM

)

THE PROBLEM

THE PROBLEM

THE PROBLEM

THE PROBLEM

INTRODUCTION

* Geodesic: shortest path that stays within P
* Always exists and is unique

* (Geodesic distance: sum of lengths of the segments

DIAMETER AND RADIUS

 Diameter (diametral pair): largest geodesic

distance

 Radius (center): smallest distance to farthest

neighbor

KNOWN RESULTS

Polygon Diameter Radius / Center Farthest Voronoi

Smple O(n) [HS'93] C[)F()”S'Fgggq) O((nﬂ&\lﬁ% Cg?+m))

« All problems have been heavily studied in simple polygons
* Only the diameter problem matches the lower bound

o Several results with other metrics in recent years, but no
progress in these problems

OUR RESULTS

Polygon Diameter Radius / Center Farthest Voronoi

| . om O((n+m)log (n+m)
Simple - OMIAS9S] 1aBBCKO™15] [AFW93]

« All problems have been heavily studied in simple polygons
* Only the diameter problem matches the lower bound

o Several results with other metrics in recent years, but no
progress in these problems

COMPUTING THE CENTER

CENTER DEFINITION

Let F(p)=max{d(p,q)} for all g in P
* The center minimizes F(p)

e [ocation is (often) unrelated to the diameter

NAIVE ALGORITHM

‘ Definers

+ Center may be an interior pont of P
* |ts farthest neighbors are vertices (at most 3 in general position)
e Vertex of the (geodesic) farthest Voronol

e O(n°) candidates

e Veritying in polynomial time also possible

cFFICIENT ALGORITHM'89

Chord-oracle query
e (3iven a chord of P, determines which side contains ¢

 Runsin O(n) time

cFFICIENT ALGORITHM'89

Chord-oracle query
e (3iven a chord of P, determines which side contains ¢

 Runsin O(n) time

EFFICIENT ALGORITHM'89

* Binary search to narrow the search to a triangle

EFFICIENT ALGORITHM'89

* Binary search to narrow the search to a triangle

EFFICIENT ALGORITHM'89

* Binary search to narrow the search to a triangle

cFFICIENT ALGORITHM'89

* Binary search to narrow the search to a triangle
* Use optimization tricks to find the center

* No pruning possible -> O(n log n) time

APEXED TRIANGLES

e Encodes distance to a potential farthest neighbor v
« All points in the triangle have (topologically equivalent) paths to v

« Simple (quadratic) function to encode distance

 We ignore P and work on the triangles

APEXED TRIANGLES

e Encodes distance to a potential farthest neighbor v
« All points in the triangle have (topologically equivalent) paths to v

« Simple (quadratic) function to encode distance

 We ignore P and work on the triangles

APEXED TRIANGLES

(%

e Encodes distance to a potential farthest neighbor v
« All points in the triangle have (topologically equivalent) paths to v

« Simple (quadratic) function to encode distance

 We ignore P and work on the triangles

APEXED TRIANGLES

(%

e Encodes distance to a potential farthest neighbor v
« All points in the triangle have (topologically equivalent) paths to v

« Simple (quadratic) function to encode distance

 We ignore P and work on the triangles

OUR APPROACH

» Cover P with apexed triangles that encode F(p)
e |gnore P

e Use cuttings to prune the triangles and recurse

DIFFICULTIES

Which triangles do
we use”?

—

* A vertex can generate ©(n) apexed triangles
 Many triangles are irrelevant

* Use geometric observations to avoid them

- [ERMINING R

-VANT TRIANGL

For each vertex compute its farthest neighbor

-RMINING RELEVANT TRIANGL
iy
PPy
U5 (& (\\r y
|
N
o

U4

/ \\._ O U3

We can compute the tarthest neighbor of
each vertex in total O(n) time.

DETERMINING RELEVANT TRIANGLE
Y,

fvl(

&~

@ V9

\b\\
A
gL \

v is marked if v is farthest neighbor of some other vertex

hj;A;\
|

MARKED VERTICES

‘K &
o

)
-
®

e[-or all marked vertex we construct its funnel F(v)

e [Funnel contains furthest vertices (and two additional neighbors)

MARKED VERTICES

MARKED VERTICES

,6

@ﬁ/ .

LY

UNMARKED VERTICES

UNMARKED VERTICES

(U V1
o —
/ /
(/&\4/ [
Us
\ v2
e
\ .
= O V\ —
/ L2 U3

e [WwO adjacent u,v such that f(u)=f(v) define ‘Hourglass H(v)

e Upper chain may contain unmarked vertices

PROPERTIES OF THE
DECOMPOSITION

]L Lemma This decomp08|t|on|s great' o |

* All hourglasses and funnels have overall linear complexity
 Computed in linear time
* Linear space

e CoversP

* Each point and its farthest neighbor are in an hourglass/funnel

DECOMPOSING A FUNNEL

_
_
_
_
~ -
P
~
_
~
_
~
P
~
_
~
_
~
~ -
X -
_

* Vertices (except endpoints) share farthest neighbor

e \Want to encode distance to it

DECOMPOSING A FUNNEL

* ook for topologically equivalent shortest paths

e Similar paths fall in the same apexed triangle

DECOMPOSING A FUNNEL

~N
N
N
eV

* ook for topologically equivalent shortest paths

e Similar paths fall in the same apexed triangle

DECOMPOSING A FUNNEL

V

* ook for topologically equivalent shortest paths

e Similar paths fall in the same apexed triangle

DECOMPOSING A FUNNEL

N
N
N
°*V

* ook for topologically equivalent shortest paths

e Similar paths fall in the same apexed triangle

DECOMPOSING A FUNNEL

N
N
N
°*V

* ook for topologically equivalent shortest paths

e Similar paths fall in the same apexed triangle

DECOMPOSING A FUNNEL

V
* For each triangle we define an apexed function

* f(p)=d(p,a)+d(a,v)

HOURGLASSES

* We decompose into triangles (similar to funnel)

 The number of triangles is linear on the size of the
hourglass

LET'S RECAP

V/>

* [wo step decomposition.

 Compute a covering of P

* Further cover regions with triangles

LET'S RECAP

N
N
N
N
N
N

* [wo step decomposition

 Compute a covering of P

* Further cover regions with triangles

LET'S RECAP

V/>

* [wo step decomposition

 Compute a covering of P

* Further cover regions with triangles

OUR APPROACH

e Overall O(n) triangles
* For any point, there is a triangle containing him

e associated vertex is a farthest neighbor

LET'S RECAP

e Overall O(n) triangles
* For any point, there is a triangle containing him

e associated vertex is a farthest neighbor

LET'S RECAP

e Overall O(n) triangles
* For any point, there is a triangle containing him

e associated vertex is a farthest neighbor

LET'S RECAP

We ignore P and use prune&search on triangles

e E—

PRUNE AND SEARCH

* Covered P with O(n) triangles
e Each triangle associated with a distance function

 We ignore P and work on the triangles

CUTTINGS

* We construct a cutting of the triangles chords (sides)
e Partition into O(1) cells

 Each cell intersecting the boundary of at most en
triangles

PRUNE AND SEARCH

e Use the chord oracle of Pollack-Sharir-Rote
 Reduce the problem to a sub-cell

* We discard a fraction of the triangles and iterate

PRUNE AND SEARCH

e Use the chord oracle of Pollack-Sharir-Rote
 Reduce the problem to a sub-cell

* We discard a fraction of the triangles and iterate

PRUNE AND SEARCH

e Use the chord oracle of Pollack-Sharir-Rote
 Reduce the problem to a sub-cell

* We discard a fraction of the triangles and iterate

SUMMARY

* Cover P with funnels/hourglasses

* Further cover the regions with triangles

* |gnore P and apply prune and search to triangles
* Finish a triangular region

* Can be solved in linear time using cuttings in R3

SUMMARY

* Cover P with funnels/hourglasses

* Further cover the regions with triangles

* |gnore P and apply prune and search to triangles
* Finish a triangular region

* Can be solved in linear time using cuttings in R3

Theorem We can compute the center of a simple
polygon in linear time

OPEN QUESTIONS

 Can we compute the center of a set of sites S in the interior of
the polygon in linear time?

Polygon Diameter Center
Simple O(n) [HS'93] ~ O(n) [ABBCKO’15]
General O’ [BKO0] O(n'2+) [BKO'14]

* For the case of polygonal domains (polygons with holes), the
running times are polynomial but unfeasible. Can we improve
them? What about lower bounds?

QUESTIONS!? COMMENTS7

Thanks for your attention!

Summary

Polygon Diameter Radius/Center Farthest Voronoi Closest Voronoi

. | O(n) O((n+m) log (n+m)) O((n+m) log (n+m))
Simple O(n) [HS'93] ([ABBCKO'1S] [AFGE3] [A'89)]

