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INTRODUCTION

• Geodesic: shortest path that stays within P 

• Always exists and is unique 

• Geodesic distance: sum of lengths of the segments



DIAMETER AND RADIUS

• Diameter (diametral pair): largest geodesic 
distance 

• Radius (center): smallest distance to farthest 
neighbor



KNOWN RESULTS

Polygon Diameter Radius / Center Farthest Voronoi

Simple O(n) [HS’93] O(n log n) 
[PSR’89]

O((n+m) log (n+m))  
[AFW’93]

• All problems have been heavily studied in simple polygons  

• Only the diameter problem matches the lower bound 

• Several results with other metrics in recent years, but no 
progress in these problems
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COMPUTING THE CENTER



CENTER DEFINITION

Let F(p)=max{d(p,q)} for all q in P 

• The center minimizes F(p) 

• Location is (often) unrelated to the diameter



NAIVE ALGORITHM

• Center may be an interior point of P 

• Its farthest neighbors are vertices (at most 3 in general position) 

• Vertex of the (geodesic) farthest Voronoi 

• O(n3) candidates 

• Verifying in polynomial time also possible

Definers



EFFICIENT ALGORITHM’89

Chord-oracle query 

• Given a chord of P, determines which side contains c 

• Runs in O(n) time
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• Binary search to narrow the search to a triangle 

• Use optimization tricks to find the center 

• No pruning possible -> Θ(n log n) time

EFFICIENT ALGORITHM’89



APEXED TRIANGLES

• Encodes distance to a potential farthest neighbor v 

• All points in the triangle have (topologically equivalent) paths to v 

• Simple (quadratic) function to encode distance 

• We ignore P and work on the triangles

v
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OUR APPROACH

• Cover P with apexed triangles that encode F(p) 

• Ignore P 

• Use cuttings to prune the triangles and recurse



DIFFICULTIES

• A vertex can generate Ɵ(n) apexed triangles 

• Many triangles are irrelevant  

• Use geometric observations to avoid them

Which triangles do 
we use?



DETERMINING RELEVANT TRIANGLES

For each vertex compute its farthest neighbor



We can compute the farthest neighbor of 
each vertex in total O(n) time.
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v is marked if v is farthest neighbor of some other vertex
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•For all marked vertex we construct its funnel F(v) 

• Funnel contains furthest vertices (and two additional neighbors)

MARKED VERTICES

Lemma FV(v)⊆F(v)  for any marked vertex v

v
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•Two adjacent u,v such that f(u)≠f(v) define an Hourglass H(v) 

• Upper chain may contain unmarked vertices

UNMARKED VERTICES



PROPERTIES OF THE 
DECOMPOSITION

Lemma This decomposition is great!

• All hourglasses and funnels have overall linear complexity 

• Computed in linear time 

• Linear space 

• Covers P 

• Each point and its farthest neighbor are in an hourglass/funnel



DECOMPOSING A FUNNEL

• Vertices (except endpoints) share farthest neighbor 

• Want to encode distance to it



DECOMPOSING A FUNNEL

• Look for topologically equivalent shortest paths 

• Similar paths fall in the same apexed triangle
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DECOMPOSING A FUNNEL

• For each triangle we define an apexed function 

• f(p)=d(p,a)+d(a,v)

a
p

v



HOURGLASSES

• We decompose into triangles (similar to funnel) 

• The number of triangles is linear on the size of the 
hourglass



LET’S RECAP 

• Two step decomposition. 

• Compute a covering of P 

• Further cover regions with triangles
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We ignore P and use prune&search on triangles

LET’S RECAP 



• Covered P with O(n) triangles 

• Each triangle associated with a distance function 

• We ignore P and work on the triangles

PRUNE AND SEARCH



CUTTINGS

• We construct a cutting of the triangles chords (sides) 

• Partition into O(1) cells 

• Each cell intersecting the boundary of at most εn 
triangles



PRUNE AND SEARCH

• Use the chord oracle of Pollack-Sharir-Rote 

• Reduce the problem to a sub-cell 

• We discard a fraction of the triangles and iterate
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• Further cover the regions with triangles 

• Ignore P and apply prune and search to triangles 

• Finish a triangular region 

• Can be solved in linear time using cuttings in R³
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• Finish a triangular region 
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Theorem We can compute the center of a simple 
polygon in linear time



OPEN QUESTIONS
• Can we compute the center of a set of sites S in the interior of 

the polygon in linear time? 

• For the case of polygonal domains (polygons with holes), the 
running times are polynomial but unfeasible. Can we improve 
them? What about lower bounds?

Polygon Diameter Center

Simple O(n) [HS’93] O(n) [ABBCKO’15]

General O(n7.73) [BKO’10] O(n12+ε) [BKO’14]



QUESTIONS? COMMENTS?

Thanks for your attention! 

Summary

Polygon Diameter Radius / Center Farthest Voronoi Closest Voronoi

Simple O(n) [HS’93] O(n) 
[ABBCKO’15]

O((n+m) log (n+m))  
[AFG’93]

O((n+m) log (n+m))  
[A’89]


